首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The specialised DNA polymerase μ (pol μ) affects a sub-class of immunoglobulin genes rearrangements and haematopoietic development in vivo. These effects appear linked to double-strand breaks (DSBs) repair, but it is still unclear how and to what extent pol μ intervenes in this process. Using high-resolution quantitative imaging of DNA damage in irradiated wild-type and pol μ?/? mouse embryonic fibroblasts (MEFs) we show that lack of pol μ results in delayed DSB repair kinetics and in persistent DNA damage. DNA damage triggers cellular senescence, and this response is thought to suppress cancer. Independent investigations either report or not a proliferative decline for MEFs lacking pol μ. Here we show pronounced senescence in pol μ?/? MEFs, associated with high levels of the tumor-suppressor p16INK4A and the DNA damage response kinase CHK2. Importantly, cellular senescence is induced by culture stress and exacerbated by low doses of irradiation in pol μ?/? MEFs. We also found that low doses of irradiation provoke delayed immortalisation in MEFs lacking pol μ. Pol μ?/? MEFs thus exhibit a robust anti-proliferative defence in response to irreparable DNA damage. These findings indicate that sub-optimal DSB repair, due to the absence of an auxiliary DNA damage repair factor, can impact on cell fitness and thereby on cell fate.  相似文献   

2.
Rothmund–Thomson syndrome (RTS) is an autosomal recessive hereditary disorder associated with mutation in RECQL4 gene, a member of the human RecQ helicases. The disease is characterized by genomic instability, skeletal abnormalities and predisposition to malignant tumors, especially osteosarcomas. The precise role of RECQL4 in cellular pathways is largely unknown; however, recent evidence suggests its involvement in multiple DNA metabolic pathways. This study investigates the roles of RECQL4 in DNA double‐strand break (DSB) repair. The results show that RECQL4‐deficient fibroblasts are moderately sensitive to γ‐irradiation and accumulate more γH2AX and 53BP1 foci than control fibroblasts. This is suggestive of defects in efficient repair of DSB’s in the RECQL4‐deficient fibroblasts. Real time imaging of live cells using laser confocal microscopy shows that RECQL4 is recruited early to laser‐induced DSBs and remains for a shorter duration than WRN and BLM, indicating its distinct role in repair of DSBs. Endogenous RECQL4 also colocalizes with γH2AX at the site of DSBs. The RECQL4 domain responsible for its DNA damage localization has been mapped to the unique N‐terminus domain between amino acids 363–492, which shares no homology to recruitment domains of WRN and BLM to the DSBs. Further, the recruitment of RECQL4 to laser‐induced DNA damage is independent of functional WRN, BLM or ATM proteins. These results suggest distinct cellular dynamics for RECQL4 protein at the site of laser‐induced DSB and that it might play important roles in efficient repair of DSB’s.  相似文献   

3.
4.
The decline in DNA repair capacity contributes to the age‐associated decrease in genome integrity in somatic cells of different species. However, due to the lack of clinical samples and appropriate tools for studying DNA repair, whether and how age‐associated changes in DNA repair result in a loss of genome integrity of human adult stem cells remains incompletely characterized. Here, we isolated 20 eyelid adipose‐derived stem cell (ADSC) lines from healthy individuals (young: 10 donors with ages ranging 17–25 years; old: 10 donors with ages ranging 50–59 years). Using these cell lines, we systematically compared the efficiency of base excision repair (BER) and two DNA double‐strand break (DSB) repair pathways—nonhomologous end joining (NHEJ) and homologous recombination (HR)—between the young and old groups. Surprisingly, we found that the efficiency of BER but not NHEJ or HR is impaired in aged human ADSCs, which is in contrast to previous findings that DSB repair declines with age in human fibroblasts. We also demonstrated that BER efficiency is negatively associated with tail moment, which reflects a loss of genome integrity in human ADSCs. Mechanistic studies indicated that at the protein level XRCC1, but not other BER factors, exhibited age‐associated decline. Overexpression of XRCC1 reversed the decline of BER efficiency and genome integrity, indicating that XRCC1 is a potential therapeutic target for stabilizing genomes in aged ADSCs.  相似文献   

5.
Aging is characterized by genome instability, which contributes to cancer formation and cell lethality leading to organismal decline. The high levels of DNA double‐strand breaks (DSBs) observed in old cells and premature aging syndromes are likely a primary source of genome instability, but the underlying cause of their formation is still unclear. DSBs might result from higher levels of damage or repair defects emerging with advancing age, but repair pathways in old organisms are still poorly understood. Here, we show that premeiotic germline cells of young and old flies have distinct differences in their ability to repair DSBs by the error‐free pathway homologous recombination (HR). Repair of DSBs induced by either ionizing radiation (IR) or the endonuclease I‐SceI is markedly defective in older flies. This correlates with a remarkable reduction in HR repair measured with the DR‐white DSB repair reporter assay. Strikingly, most of this repair defect is already present at 8 days of age. Finally, HR defects correlate with increased expression of early HR components and increased recruitment of Rad51 to damage in older organisms. Thus, we propose that the defect in the HR pathway for germ cells in older flies occurs following Rad51 recruitment. These data reveal that DSB repair defects arise early in the aging process and suggest that HR deficiencies are a leading cause of genome instability in germ cells of older animals.  相似文献   

6.
Most mammalian cells do not divide indefinitely, owing to a process termed replicative senescence. In human cells, replicative senescence is caused by telomere shortening, but murine cells senesce despite having long stable telomeres. Here, we show that the phenotypes of senescent human fibroblasts and mouse embryonic fibroblasts (MEFs) differ under standard culture conditions, which include 20% oxygen. MEFs did not senesce in physiological (3%) oxygen levels, but underwent a spontaneous event that allowed indefinite proliferation in 20% oxygen. The proliferation and cytogenetic profiles of DNA repair-deficient MEFs suggested that DNA damage limits MEF proliferation in 20% oxygen. Indeed, MEFs accumulated more DNA damage in 20% oxygen than 3% oxygen, and more damage than human fibroblasts in 20% oxygen. Our results identify oxygen sensitivity as a critical difference between mouse and human cells, explaining their proliferative differences in culture, and possibly their different rates of cancer and ageing.  相似文献   

7.
8.
Telomeres, the nucleoprotein structures at the ends of linear chromosomes, promote genome stability by distinguishing chromosome termini from DNA double‐strand breaks (DSBs). Cells possess two principal pathways for DSB repair: homologous recombination and non‐homologous end joining (NHEJ). Several studies have implicated TRF2 in the protection of telomeres from NHEJ, but the underlying mechanism remains poorly understood. Here, we show that TRF2 inhibits NHEJ, in part, by recruiting human RAP1 to telomeres. Heterologous targeting of hRAP1 to telomeric DNA was sufficient to bypass the need for TRF2 in protecting telomeric DNA from NHEJ in vitro. On expanding these studies in cells, we find that recruitment of hRAP1 to telomeres prevents chromosome fusions caused by the loss of TRF2/hRAP1 from chromosome ends despite activation of a DNA damage response. These results provide the first evidence that hRAP1 inhibits NHEJ at mammalian telomeres and identify hRAP1 as a mediator of genome stability.  相似文献   

9.
10.
ATAD5, the human ortholog of yeast Elg1, plays a role in PCNA deubiquitination. Since PCNA modification is important to regulate DNA damage bypass, ATAD5 may be important for suppression of genomic instability in mammals in vivo. To test this hypothesis, we generated heterozygous (Atad5(+/m)) mice that were haploinsuffficient for Atad5. Atad5(+/m) mice displayed high levels of genomic instability in vivo, and Atad5(+/m) mouse embryonic fibroblasts (MEFs) exhibited molecular defects in PCNA deubiquitination in response to DNA damage, as well as DNA damage hypersensitivity and high levels of genomic instability, apoptosis, and aneuploidy. Importantly, 90% of haploinsufficient Atad5(+/m) mice developed tumors, including sarcomas, carcinomas, and adenocarcinomas, between 11 and 20 months of age. High levels of genomic alterations were evident in tumors that arose in the Atad5(+/m) mice. Consistent with a role for Atad5 in suppressing tumorigenesis, we also identified somatic mutations of ATAD5 in 4.6% of sporadic human endometrial tumors, including two nonsense mutations that resulted in loss of proper ATAD5 function. Taken together, our findings indicate that loss-of-function mutations in mammalian Atad5 are sufficient to cause genomic instability and tumorigenesis.  相似文献   

11.
The NAD+‐dependent deacetylase SIRT1 can be oncogenic or tumor suppressive depending on the tissue. Little is known about the role of SIRT1 in non‐small cell lung carcinoma (NSCLC), one of the deadliest cancers, that is frequently associated with mutated K‐RAS. Therefore, we investigated the effect of SIRT1 on K‐RAS‐driven lung carcinogenesis. We report that SIRT1 protein levels are downregulated by oncogenic K‐RAS in a MEK and PI3K‐dependent manner in mouse embryo fibroblasts (MEFs), and in human lung adenocarcinoma cell lines. Furthermore, Sirt1 overexpression in mice delays the appearance of K‐RasG12V‐driven lung adenocarcinomas, reducing the number and size of carcinomas at the time of death and extending survival. Consistently, lower levels of SIRT1 are associated with worse prognosis in human NSCLCs. Mechanistically, analysis of mouse Sirt1‐Tg pneumocytes, isolated shortly after K‐RasG12V activation, reveals that Sirt1 overexpression alters pathways involved in tumor development: proliferation, apoptosis, or extracellular matrix organization. Our work demonstrates a tumor suppressive role of SIRT1 in the development of K‐RAS‐driven lung adenocarcinomas in mice and humans, suggesting that the SIRT1–K‐RAS axis could be a therapeutic target for NSCLCs.  相似文献   

12.
Epithelial‐mesenchymal transition (EMT) plays an important role in idiopathic pulmonary fibrosis (IPF). Astragaloside IV (ASV), a natural saponin from astragalus membranaceus, has shown anti‐fibrotic property in bleomycin (BLM)‐induced pulmonary fibrosis. The current study was undertaken to determine whether EMT was involved in the beneficial of ASV against BLM‐induced pulmonary fibrosis and to elucidate its potential mechanism. As expected, in BLM‐induced IPF, ASV exerted protective effects on pulmonary fibrosis and ASV significantly reversed BLM‐induced EMT. Intriguing, transforming growth factor‐β1 (TGF‐β1) was found to be up‐regulated, whereas Forkhead box O3a (FOXO3a) was hyperphosphorylated and less expressed. However, ASV treatment inhibited increased TGF‐β1 and activated FOXO3a in lung tissues. TGF‐β1 was administered to alveolar epithelial cells A549 to induce EMT in vitro. Meanwhile, stimulation with TGF‐β1‐activated phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) pathway and induced FOXO3a hyperphosphorylated and down‐regulated. It was found that overexpression of FOXO3a leading to the suppression of TGF‐β1‐induced EMT. Moreover, ASV treatment, similar with the TGF‐β1 or PI3K/Akt inhibitor, reverted these cellular changes and inhibited EMT in A549 cells. Collectively, the results suggested that ASV significantly inhibited TGF‐β1/PI3K/Akt‐induced FOXO3a hyperphosphorylation and down‐regulation to reverse EMT during the progression of fibrosis.  相似文献   

13.
ATM‐mediated phosphorylation of KAP‐1 triggers chromatin remodeling and facilitates the loading and retention of repair proteins at DNA lesions. Mouse embryonic fibroblasts (MEFs) derived from Zmpste24?/? mice undergo early senescence, attributable to delayed recruitment of DNA repair proteins. Here, we show that ATM‐Kap‐1 signaling is compromised in Zmpste24?/? MEFs, leading to defective DNA damage‐induced chromatin remodeling. Knocking down Kap‐1 rescues impaired chromatin remodeling, defective DNA repair and early senescence in Zmpste24?/? MEFs. Thus, ATM‐Kap‐1‐mediated chromatin remodeling plays a critical role in premature aging, carrying significant implications for progeria therapy.  相似文献   

14.
15.
DNA hypomethylation is a hallmark of many types of solid tumors. However, it remains elusive how DNA hypomethylation may contribute to tumorigenesis. In this study, we have investigated how targeted disruption of the DNA methyltransferases Dnmt3a and Dnmt3b affects the growth of mouse embryonic fibroblasts (MEFs). Our studies led to the following observations. 1) Constitutive or conditional deletion of Dnmt3b, but not Dnmt3a, resulted in partial loss of DNA methylation throughout the genome, suggesting that Dnmt3b, in addition to the major maintenance methyltransferase Dnmt1, is required for maintaining DNA methylation in MEF cells. 2) Dnmt3b-deficient MEF cells showed aneuploidy and polyploidy, chromosomal breaks, and fusions. 3) Inactivation of Dnmt3b resulted in either premature senescence or spontaneous immortalization of MEF cells. 4) The G(1) to S-phase checkpoint was intact in primary and spontaneously immortalized Dnmt3b-deficient MEFs because the p53 protein was inducible by DNA damage. Interestingly, protein levels of the cyclindependent kinase inhibitor p21 were increased in immortalized Dnmt3b-deficient MEFs even in the absence of p53 induction. These results suggest that DNA hypomethylation may induce genomic instability, which in turn leads to spontaneous immortalization or premature senescence of Dnmt3b-deficient MEFs via a p53-independent mechanism.  相似文献   

16.
DNA double strand breaks (DSBs) are a severe threat to genome integrity and a potential cause of tumorigenesis, which is a multi-stage process and involves many factors including the mutation of oncogenes and tumor suppressors, some of which are transcribed microRNAs (miRNAs). Among more than 2000 known miRNAs, miR-21 is a unique onco-miRNA that is highly expressed in almost all types of human tumors and is associated with tumorigenesis through its multiple targets. However, it remains unclear whether there is any functional link between DSBs and miR-21 expression and, if so, does the link contribute to DSB-induced genomic instability/tumorigenesis. To address this question, we used DNA-PKcs-/- (deficient in non-homologous end-joining (NHEJ)) and Rad54-/- (deficient in homologous recombination repair (HRR)) mouse embryonic fibroblasts (MEFs) since NHEJ and HRR are the major pathways for DSB repair in mammalian cells. Our results indicate that levels of miR-21 are elevated in these DSB repair (DSBR) deficient cells, and ionizing radiation (IR) further increases these levels in both wild-type (WT) and DSBR-deficient cells. Interestingly, IR stimulated growth in soft agar and this effect was greatly reduced by blocking miR-21 expression in both WT and DSBR-deficient cells. Taken together, our results suggest that either IR or DSBR-deficient can lead to an upregulation of miR-21 levels and that miR-21 is associated with IR-induced cell growth in soft agar. These results may help our understanding of DSB-induced tumorigenesis and provide information that could facilitate the development of new strategies to prevent DSB-induced carcinogenesis.  相似文献   

17.
Double-strand DNA breaks (DSBs) cause cell death and genome instability. Homologous recombination is a major DSB repair pathway that operates by forming joint molecules with homologous DNA sequences, which are used as templates to achieve accurate repair. In eukaryotes, Rad51 protein (RecA homolog) searches for homologous sequences and catalyzes the formation of joint molecules (D-loops). Once joint molecules have been formed, DNA polymerase extends the 3' single-stranded DNA tails of the broken chromosome, restoring the lost information. How joint molecules subsequently dissociate is unknown. We reconstituted DSB repair in vitro using purified human homologous recombination proteins and DNA polymerase eta. We found that Rad54 protein, owing to its ATP-dependent branch-migration activity, can cause dissociation of joint molecules. These results suggest a previously uncharacterized mechanism of DSB repair in which Rad54 branch-migration activity plays an important role.  相似文献   

18.
Alterations in MYC and p53 are hallmarks of cancer. p53 coordinates the response to gamma irradiation (gamma-IR) by either triggering apoptosis or cell cycle arrest. c-Myc activates the p53 apoptotic checkpoint, and thus tumors overexpressing MYC often harbor p53 mutations. Nonetheless, many of these cancers are responsive to therapy, suggesting that Myc may sensitize cells to gamma-IR independent of p53. In mouse embryo fibroblasts (MEFs) and in E micro -myc transgenic B cells in vivo, c-Myc acts in synergy with gamma-IR to trigger apoptosis, but alone, when cultured in growth medium, it does not induce a DNA damage response. Surprisingly, c-Myc also sensitizes p53-deficient MEFs to gamma-IR-induced apoptosis. In normal cells, and in precancerous B cells of E micro -myc transgenic mice, this apoptotic response is associated with the suppression of the antiapoptotic regulators Bcl-2 and Bcl-X(L) and with the concomitant induction of Puma, a proapoptotic BH3-only protein. However, in p53-null MEFs only Bcl-X(L) expression was suppressed, suggesting levels of Bcl-X(L) regulate the response to gamma-IR. Indeed, Bcl-X(L) overexpression blocked this apoptotic response, whereas bcl-X-deficient MEFs were inherently and selectively sensitive to gamma-IR-induced apoptosis. Therefore, MYC may sensitize tumor cells to DNA damage by suppressing Bcl-X.  相似文献   

19.
The complete and faithful duplication of the genome is an essential prerequisite for proliferating cells to maintain genome integrity. This objective is greatly challenged by DNA damage encountered during replication, which causes fork stalling and in certain cases, fork breakage. DNA damage tolerance (DDT) pathways mitigate the effects on fork stability induced by replication fork stalling by mediating damage-bypass and replication fork restart. These DDT mechanisms, largely relying on homologous recombination (HR) and specialized polymerases, can however contribute to genome rearrangements and mutagenesis. There is a profound connection between replication and recombination: recombination proteins protect replication forks from nuclease-mediated degradation of the nascent DNA strands and facilitate replication completion in cells challenged by DNA damage. Moreover, in case of fork collapse and formation of double strand breaks (DSBs), the recombination factors present or recruited to the fork facilitate HR-mediated DSB repair, which is primarily error-free. Disruption of HR is inexorably linked to genome instability, but the premature activation of HR during replication often leads to genome rearrangements. Faithful replication necessitates the downregulation of HR and disruption of active RAD51 filaments at replication forks, but upon persistent fork stalling, building up of HR is critical for the reorganization of the replication fork and for filling-in of the gaps associated with discontinuous replication induced by DNA lesions. Here we summarize and reflect on our understanding of the mechanisms that either suppress recombination or locally enhance it during replication, and the principles that underlie this regulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号