首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
金沙江干热河谷山地植被恢复区土壤种子库和地上植被研究   总被引:10,自引:0,他引:10  
罗辉  王克勤 《生态学报》2006,26(8):2432-2442
土壤种子库在植物种群动态中起着重要作用。土壤种子库可缓解种群的灭绝过程,保存群落中植物种的表现特征,是植被天然更新的物质基础。通过对金沙江干热河谷山地植被恢复区(包括水平阶、自然坡面、沟底)和未恢复区(包括放牧地)的土壤种子库和地上植被的组成、大小及多样性进行比较研究表明,植被恢复区土壤种子库和地上植被的密度、丰富度、多样性及均匀度均大于未恢复区。恢复区地上生物量要远大于未恢复区。水平阶和各类型间的土壤种子库密度与地上植被密度差异显著。土壤种子库中草本植物占很大比例。孔颖草和扭黄茅是土壤种子库和地上植被的两大优势种,两者的个体数量、重要值及生物量最大。土壤种子库和地上植被有较高的相似性,且随着恢复程度的加深,相似性有增高的趋势;土壤种子库密度和地上植被密度之间关系可以用二次和三次曲线拟合。  相似文献   

3.
Hui Luo  Keqin Wang 《生态学报》2006,(8):2432-2442
Soil seed bank plays an important role in the composition of different plant communities, especially in their conservation. Although soil seed bank, aboveground vegetation and their relationship have been the subject of much recent attention, little is known about the size and species composition of the soil seed bank and about the aboveground vegetation in the semiarid hillslope grasslands. There is limited understanding of how these components interact to determine the importance of seed banks in regeneration. In this study, the size and species composition of a soil seed bank and aboveground vegetation have been assessed in an experiment using 36 vegetation quadrats and 108 soil samples in terrace, slope, gully, and grazing land. This land represents a range of habitats within a hillslope grassland in Jinshajing hot-dry river valley of Yunnan, China. Terrace, slope, and gully represent restored sites and grazing land typifies unrestored sites. Twenty-one taxa in the seed bank were identified with a median and median density of 7 species/m2 and 5498 seeds/m2, respectively, whereas in the aboveground vegetation, 19 species were observed with a median and median density of 6 species/m2 and 1088 plants/m2, respectively. Both seed bank density and aboveground vegetation density among grazing land, gully, slope, and terrace differed significantly. There was an absolutely high proportion of herbaceous species in the seed bank and aboveground vegetation. Gramineae predominated over both seed bank and vegetation. The most frequent seeds and plants were Bothriochloa pertusa (L.) A. Camus and Heteropogon contortus (L.) Beauv that had the highest individual number, importance value, and biomass. In the seed bank, the seeds of Bothriochloa pertusa (L.) A. Camus and Heteropogon contortus (L.) Beauv accounted for 50.68% and 33.10% of the total seeds, respectively. In the aboveground vegetation, the individual number of Bothriochloa pertusa (L.) A. Camus and Heteropogon contortus (L.) Beauv accounted for 55.66% and 29.86% of the total, respectively. The biomass of Bothriochloa pertusa (L.) A. Camus and Heteropogon contortus (L.) Beauv accounted for more than 70% of the total, reaching 206.71 g/m2 and 147.76 g/m2, respectively. Bothriochloa pertusa (L.) A. Camus and Heteropogon contortus (L.) Beauv had the highest importance value of 193.01 and 159.99, respectively. Density, biomass, species richness, species diversity, and evenness were the highest in terrace land, whereas these were lowest in grazing land. Similarities between the seed bank and the aboveground vegetation were moderately high and not very different among slope, gully, and terrace lands, while for grazing land, they tended to increase when the restorative stage progressed. This result contrasts with some other studies where the seed bank contributes very little to the seedling flora and the vegetative growth clearly overwhelms sexual reproduction. The hypothesis about significant functional correlation between soil seed bank density and aboveground vegetation density is conformed. Correlation between soil seed bank density and aboveground vegetation density can be described in quadratic and cubic curves. The strong similarity between the vegetation and the seed bank is attributed to a large proportion of the species Bothriochloa pertusa (L.) A. Camus and Heteropogon contortus (L.) Beauv., which are seed profusive and whose seeds have a significant viability in the ground. The high density, biomass, species richness, species diversity, and uniformity of the reclaimed site are related to the sufficiency of heat and water supplies for species establishment and growth in the site, which partly reflects the effective efforts for hillslope grassland restoration. It is believed that the efforts for vegetation restoration have altered the microhabitat conditions of the site and have provided a favorable habitat for species to establish and grow.  相似文献   

4.
Luo H  Wang K Q 《农业工程》2006,26(8):2432-2442
Soil seed bank plays an important role in the composition of different plant communities, especially in their conservation. Although soil seed bank, aboveground vegetation and their relationship have been the subject of much recent attention, little is known about the size and species composition of the soil seed bank and about the aboveground vegetation in the semiarid hillslope grasslands. There is limited understanding of how these components interact to determine the importance of seed banks in regeneration. In this study, the size and species composition of a soil seed bank and aboveground vegetation have been assessed in an experiment using 36 vegetation quadrats and 108 soil samples in terrace, slope, gully, and grazing land. This land represents a range of habitats within a hillslope grassland in Jinshajing hot-dry river valley of Yunnan, China. Terrace, slope, and gully represent restored sites and grazing land typifies unrestored sites. Twenty-one taxa in the seed bank were identified with a median and median density of 7 species/m2 and 5498 seeds/m2, respectively, whereas in the aboveground vegetation, 19 species were observed with a median and median density of 6 species/m2 and 1088 plants/m2, respectively. Both seed bank density and aboveground vegetation density among grazing land, gully, slope, and terrace differed significantly. There was an absolutely high proportion of herbaceous species in the seed bank and aboveground vegetation. Gramineae predominated over both seed bank and vegetation. The most frequent seeds and plants were Bothriochloa pertusa (L.) A. Camus and Heteropogon contortus (L.) Beauv that had the highest individual number, importance value, and biomass. In the seed bank, the seeds of Bothriochloa pertusa (L.) A. Camus and Heteropogon contortus (L.) Beauv accounted for 50.68% and 33.10% of the total seeds, respectively. In the aboveground vegetation, the individual number of Bothriochloa pertusa (L.) A. Camus and Heteropogon contortus (L.) Beauv accounted for 55.66% and 29.86% of the total, respectively. The biomass of Bothriochloa pertusa (L.) A. Camus and Heteropogon contortus (L.) Beauv accounted for more than 70% of the total, reaching 206.71 g/m2 and 147.76 g/m2, respectively. Bothriochloa pertusa (L.) A. Camus and Heteropogon contortus (L.) Beauv had the highest importance value of 193.01 and 159.99, respectively. Density, biomass, species richness, species diversity, and evenness were the highest in terrace land, whereas these were lowest in grazing land. Similarities between the seed bank and the aboveground vegetation were moderately high and not very different among slope, gully, and terrace lands, while for grazing land, they tended to increase when the restorative stage progressed. This result contrasts with some other studies where the seed bank contributes very little to the seedling flora and the vegetative growth clearly overwhelms sexual reproduction. The hypothesis about significant functional correlation between soil seed bank density and aboveground vegetation density is conformed. Correlation between soil seed bank density and aboveground vegetation density can be described in quadratic and cubic curves. The strong similarity between the vegetation and the seed bank is attributed to a large proportion of the species Bothriochloa pertusa (L.) A. Camus and Heteropogon contortus (L.) Beauv., which are seed profusive and whose seeds have a significant viability in the ground. The high density, biomass, species richness, species diversity, and uniformity of the reclaimed site are related to the sufficiency of heat and water supplies for species establishment and growth in the site, which partly reflects the effective efforts for hillslope grassland restoration. It is believed that the efforts for vegetation restoration have altered the microhabitat conditions of the site and have provided a favorable habitat for species to establish and grow.  相似文献   

5.

Questions

Are factors influencing plant diversity in a fire‐prone Mediterranean ecosystem of southeast Australia scale‐dependent?

Location

Heathy woodland, Otways region, Victoria, southeast Australia

Methods

We measured patterns of above‐ground and soil seed bank vegetation diversity and associated them with climatic, biotic, edaphic, topographic, spatial and disturbance factors at multiple scales (macro to micro) using linear mixed effect and generalized dissimilarity modelling.

Results

At the macro‐scale, we found species richness above‐ground best described by climatic factors and in the soil seed bank by disturbance factors. At the micro‐scale we found species richness best described above‐ground and in the soil seed bank by disturbance factors, in particular time‐since‐last‐fire. We found variance in macro‐scale β‐diversity (species turnover) best explained above‐ground by climatic and disturbance factors and in the soil seed bank by climatic and biotic factors.

Conclusions

Regional climatic gradients interact with edaphic factors and fire disturbance history at small spatial scales to influence species richness and turnover in the studied ecosystem. Current fire management regimes need to incorporate key climatic–disturbance–diversity interactions to maintain floristic diversity in the studied system.
  相似文献   

6.
Summary The emergence of carbon markets has provided a potential source of funding for reforestation projects. However, there is concern amongst ecologists that these markets will promote the establishment of monoculture plantations rather than more diverse restoration plantings, on the assumption that fast‐growing monocultures are likely to store more carbon than restoration plantings. We examined the validity of this assumption for three predominantly rainforest plantation types established in the moist tropical uplands of north‐east Australia: monoculture plantations of native rainforest conifers (n = 5, mean age 13 years); mixed species plantations of rainforest cabinet timber species, rainforest conifers and eucalypts (n = 5, mean age 13 years); and, environmental restoration plantings comprised mostly of a diverse range of rainforest trees (n = 10, mean age 14 years). We found that restoration plantings stored significantly more carbon in above‐ground biomass than monoculture plantations of native conifers (on average, 106 t vs 62 t carbon per ha); and tended to store more carbon than mixed species timber plantations which were intermediate in value (86 t carbon per ha). Carbon stocks were higher in restoration plantings than in monoculture and mixed species plantations for three reasons. First, and most importantly, restoration plantings were more densely stocked than monoculture and mixed species plantations. Second, there were more large diameter trees in restoration plantings than monoculture plantations. Third, the trees used in restoration plantings had a higher average wood density than the conifers used in monoculture plantations. While, on average, wood density was higher in mixed species plantations than restoration plantings, the much higher stocking rate of restoration plantings meant they stored more carbon than mixed species plantations. We conclude that restoration plantings in the moist tropics of north‐east Australia can accumulate relatively high amounts of carbon within two decades of establishment. Comparison with reference rainforest sites suggests that restoration plantings could maintain their high stocking rates (and therefore high biomass) as they develop in future decades. However, because restoration plantings are currently much more expensive to establish than monoculture plantations, restoration plantings are unlikely to be favoured by carbon markets. Novel reforestation techniques and designs are required if restoration plantings are to both provide habitat for rainforest biota and store carbon in biomass at a cost comparable to monoculture plantations.  相似文献   

7.
The soil seed bank can be an important source for vegetation regeneration, and data on the similarity between aboveground vegetation and the seed bank can provide information about successional pathways after disturbances or land-use change. We conducted this study in natural grasslands in the subtropical highland region in southern Brazil. We evaluated the effect of silviculture on richness, density, and composition of the seed bank at former grassland sites converted to pine plantations 25 years ago. We worked at six grassland sites and three pine plantation sites and used the seedling emergence method. Seed bank density and richness in grasslands were lower than those reported in similar environments in other regions. Species richness and density varied considerably within each vegetation type; therefore, richness and density were not statistically significant, while composition varied among vegetation types. In terms of species, the pine plantation seed bank was a small subset of the grassland seed bank. Seeds of typical grassland species were missing in the pine plantation, but also had only low abundances in the grassland, and similarity of seed bank and vegetation were low (less than 20%). The low seed density found in this study, including in grasslands areas, indicates that regeneration of species from the soil seed bank likely is of a limited role for the maintenance of plant populations after disturbances in this system. Our data further suggest that natural regeneration after tree planting in grasslands is reduced due to seed limitation.  相似文献   

8.
Questions: How does recreational disturbance (human trampling) affect soil characteristics, the performance of the understorey vegetation, and the density and species composition of the soil seed bank in Fagus sylvatica forests? Location: Suburban forests near Basel, northwestern Switzerland. Methods: We compared various soil characteristics and the performance of the understorey vegetation in six beech forest areas frequently disturbed by recreational activities with those in six undisturbed control areas, in spring 2003. In the same forest areas, the soil seed bank was investigated using the seedling emergence method. Samples were obtained from soil cores in January 2003. Results: We found substantial changes in soil compaction, above‐ground vegetation and in the soil seed bank due to recreational activities. In frequently visited areas, soil compaction was enhanced which caused a decrease in cover, height and species richness of both herb and shrub layers. Compared with control areas, the number of trampling‐tolerant species of the seed bank was significantly higher in disturbed areas, and total species richness tended to be higher in disturbed than in control areas. Furthermore, the similarity in species composition between the above‐ground vegetation and seed bank was significant lower in disturbed than in control areas. Conclusions: The intensive use of suburban forests for recreational activities, mainly picnicking, affects the vegetation of natural beech forests. Our study indicates that a restoration of degraded forest areas from the soil seed bank would result in a substantial change of the vegetation composition.  相似文献   

9.
土壤种子库作为地上植被更新的潜在种源,在植被自然恢复和演替过程以及生态系统建设中起着重要作用。以宁夏盐池县荒漠草原区4种植物群落为研究对象,通过对封育16年后植物群落土壤理化性质的变化与其土壤种子库的特征之间的关系的探讨,揭示荒漠草原植物群落的土壤种子库分布特征和演替趋势,以及土壤质量的改变如何影响土壤种子库特征。研究结果表明:(1)不同植物群落土壤种子库物种组成及种子密度不同,同一物种在不同植物群落土壤种子库中出现时种子密度也存在差异;禾本科、菊科、藜科植物种在4种植物群落土壤种子库中出现比例均较高,分别占到26.19%、21.43%和19.05%,占总物种数的66.7%;灰绿藜、冰草、碱蓬在4种植物群落土壤种子库中均有出现。(2)4种植物群落土壤种子库中多年生植物和一年生植物种子居多,灌木、半灌木植物种较少。(3)4种植物群落土壤种子库中物种数和种子密度均表现为:芨芨草群落 > 苦豆子群落 > 油蒿群落 > 盐爪爪群落;且随着土层的加深,4种植物群落土壤种子库中物种数和种子密度均呈递减趋势。(4)4种植物群落土壤种子库中Shannon-Wiener指数、Simpsin指数、Pielou指数和Patrick指数均表现为芨芨草群落 > 苦豆子群落 > 油蒿群落 > 盐爪爪群落。此外,芨芨草群落土壤种子库与油蒿群落土壤种子库相似性最高,油蒿群落与盐爪爪群落的最低。(5)土壤种子库物种多样性特征指数与土壤pH、含水量、碱解氮呈正相关,与土壤电导率呈负相关,其中土壤pH和电导率对种子库物种多样性的影响较大。荒漠草原封育以后,土壤种子库中植物种数、种子密度和物种多样性均呈增加趋势,且以多年生植物和一年生植物种子居多;禾本科和豆科植物的物种数和种子密度大于菊科和藜科,这表明围封后牧草品质改善,植物群落正向演替。  相似文献   

10.
贵州茂兰喀斯特森林中华蚊母树群落种子库及其萌发特征   总被引:20,自引:0,他引:20  
刘济明 《生态学报》2001,21(2):197-203
茂兰喀斯特森林中华蚊母树群落900m^2的样地内共有种子植物59种。其中19种主要植物已进人繁殖阶段,每年产生成熟种子238.8粒/m^2,种子雨量达351.1粒/m^2。其中对群落更新有作用的成熟有效种子数为150.8粒/m^2。萌发前种子库中有活力种子41种2642.O粒/m^2。其中现存植物种子19种。萌发后种子库中有活力种子28种2504.5粒/m^2,其中现存植物种子6种。葫发前后种子库的差异主要在于枯枝落叶层的种子含量。当年产生的种子大多数位于种子库的枯落叶层中,随时间推移,寿命较长的种子逐渐移到土壤层中。群落演替前期各阶段产生的种子全部位于土壤层里。萌发前种子库与现存群落的相似性大于萌发后种子库。群落内有19种主要植物繁殖产生种子,并在萌发前的种子库中有活力种子存在,群落更新潜力很好。群落遭受破坏的季节不同。其恢复潜力也不一样。群落内平均每年萌发出苗14种54.2株/m^2,当年存活24.5株/m^2,群落更新较好。  相似文献   

11.
12.
13.
普洱市周边地区4种土地利用类型土壤种子库特征   总被引:2,自引:0,他引:2  
通过对云南普洱市周边地区次生季风常绿阔叶林、针阔混交林、人工更新形成的针叶林及茶园等4种土地利用类型的野外调查及土壤种子库的萌发实验,探讨其土壤种子库的密度大小、物种丰富度和组成及与地上植被的关系。结果表明:干扰强度与频度不同导致土地利用类型之间土壤种子库密度与物种丰富度存在较大差异,土壤种子库密度大小顺序为:针叶林(248.67±116.86)粒·m-2>针阔混交林(186.00±43.27)粒·m-2>次生季风常绿阔叶林(107.33±16.48)粒·m-2>茶园(51.67±10.17)粒·m-2;茶园土壤种子库物种丰富度要显著低于其他类型。4种土地利用类型土壤种子库生活型组成差异极显著,主要以草本植物组成,以菊科与禾本科占优势;针阔混交林的草本植物种子密度最多,非森林的原生物种是草本植物的主要组成;针叶林外来物种的种子密度要显著高于其他类型,紫茎泽兰(Eupatorium adenophorum)是其主要组成。土壤种子库与地上植被的相似性系数较低,其大小顺序为:次生季风常绿阔叶林(0.175)<针阔混交林(0.176)<针叶林(0.215)。  相似文献   

14.

Aim

Studies that monitor high‐mountain vegetation, such as paramo grasslands in the Andes, lack non‐destructive biomass estimation methods. We aimed to develop and apply allometric models for above‐ground, below‐ground and total biomass of paramo plants.

Location

The paramo of southern Colombia between 1°09′N and 077°50′W, at 3,400 and 3,700 m a.s.l.

Methods

We established 61 1‐m2 plots at random locations, excluding disturbed, inaccessible and peat bog areas. We measured heights and basal diameters of all vascular plants in these plots and classified them into seven growth forms. Near each plot, we sampled the biomass from plants of abundant genera, after having measured their height and basal diameter. Hence, we measured the biomass of 476 plants (allometric set). For each growth form we applied power‐law functions to develop allometric models of biomass against basal diameter, height, height x basal diameter and height × basal area. The best models were selected using AICc weights. Using the observed and predicted plant biomass of the allometric set we calculated absolute percentage errors using cross‐validation. The biomass of a plot was estimated by summing the predicted biomass of all plants in a plot. Confidence limits around these sums were calculated by bootstrapping.

Results

For groups of <20 plants the biomass predictions yielded large (>15%) errors. Applying groups that resembled the 1‐m2 plots in density and composition, the errors for above‐ground and total biomass estimates were <15%. Across all plots, we obtained an above‐ground, below‐ground and total plot biomass of 329 ± 190, 743 ± 486 and 1011 ± 627 g/m2 (mean ± SD), respectively. These values were within the range of biomass estimates obtained destructively in the tropical Andes.

Conclusions

In new applications, if target vegetation samples are similar regarding growth forms and genera to our allometric set, their biomass might be predicted applying our equations, provided they contain at least 50–100 plants. In other situations, we would recommend gathering additional biomass measurements from local plants to evaluate new regression equations.  相似文献   

15.
Plant communities dominated by narrow‐leaved mallee (Eucalyptus cneorifolia) are almost entirely confined to north‐eastern Kangaroo Island, South Australia, an area which has been extensively cleared for agriculture. Consequently, surviving examples consist mostly of small remnants which are thought to be senescent due to the exclusion of fire. This senescence is associated with the loss of many native understory species. Prescribed burns have been suggested as a management tool to stimulate the restoration of native plants from the soil seed bank; however, no seed bank studies have previously been conducted on Kangaroo Island and the seed bank literature usually focuses on particular species rather than on plant communities. We conducted an experiment to investigate the effects of the fire‐related cues heat and smoke on the germination of plants from the seed bank in soil sampled from 10 long‐ungrazed narrow‐leaved mallee sites on Kangaroo Island. Eighty trays of soil were monitored in a controlled glasshouse for five months after being subjected to heat and/or smoke treatments. The overall number of native, but not exotic, plant species germinating from the soil seed bank was significantly increased by all three fire‐related treatments (heat, smoke and heat plus smoke) compared with the control (no fire‐related treatment). Different plant life forms exhibited varying responses to heat and smoke treatments. The results of this study illustrate that the application of fire‐related treatments to soil seed banks in controlled glasshouse conditions can stimulate the recruitment of native species, including several species of conservation concern. These findings also indicate the potential of using these treatments for the ex situ germination of fire dependent species for revegetation purposes and indicate aspects of prescribed burns that may be important for restoring different components of native vegetation.  相似文献   

16.
17.
  • Meta‐communities of habitat islands may be essential to maintain biodiversity in anthropogenic landscapes allowing rescue effects in local habitat patches. To understand the species‐assembly mechanisms and dynamics of such ecosystems, it is important to test how local plant‐community diversity and composition is affected by spatial isolation and hence by dispersal limitation and local environmental conditions acting as filters for local species sorting.We used a system of 46 small wetlands (kettle holes)—natural small‐scale freshwater habitats rarely considered in nature conservation policies—embedded in an intensively managed agricultural matrix in northern Germany. We compared two types of kettle holes with distinct topographies (flat‐sloped, ephemeral, frequently plowed kettle holes vs. steep‐sloped, more permanent ones) and determined 254 vascular plant species within these ecosystems, as well as plant functional traits and nearest neighbor distances to other kettle holes.Differences in alpha and beta diversity between steep permanent compared with ephemeral flat kettle holes were mainly explained by species sorting and niche processes and mass effect processes in ephemeral flat kettle holes. The plant‐community composition as well as the community trait distribution in terms of life span, breeding system, dispersal ability, and longevity of seed banks significantly differed between the two habitat types. Flat ephemeral kettle holes held a higher percentage of non‐perennial plants with a more persistent seed bank, less obligate outbreeders and more species with seed dispersal abilities via animal vectors compared with steep‐sloped, more permanent kettle holes that had a higher percentage of wind‐dispersed species. In the flat kettle holes, plant‐species richness was negatively correlated with the degree of isolation, whereas no such pattern was found for the permanent kettle holes.Synthesis: Environment acts as filter shaping plant diversity (alpha and beta) and plant‐community trait distribution between steep permanent compared with ephemeral flat kettle holes supporting species sorting and niche mechanisms as expected, but we identified a mass effect in ephemeral kettle holes only. Flat ephemeral kettle holes can be regarded as meta‐ecosystems that strongly depend on seed dispersal and recruitment from a seed bank, whereas neighboring permanent kettle holes have a more stable local species diversity.
  相似文献   

18.
Soil seed bank is an important source of resilience of plant communities who suffered disturbances. We analysed the effect of an intense fire in the soil seed bank of a semi‐arid shrubland of Córdoba Argentina. We asked if the fire affected seed abundance, floristic and functional composition of the soil seed bank at two different layers (0–5 cm and 5–10 cm), and if fire could compromise the role of the soil seed bank as a source of resilience for the vegetation. We collected soil samples from a burned site and from a control site that had not burned. Samples were installed in a greenhouse under controlled conditions. During 12 months, we recorded all germinated seedlings. We compare soil seed bank with pre‐fire vegetation in terms of floristic and functional composition. The high‐intensity fire deeply affected the abundance of seeds in the soil, but it did not affect its floristic or functional composition. Floristic and functional composition of soil seed banks – at burned and unburned sites‐ differed markedly from that of the pre‐fire vegetation, although a previous study at the same site indicated high resilience after fire of this plant community. Our results indicate that resilience of this system is not strongly dependent on direct germination from seeds buried in the soil. Other sources of resilience, like colonization from neighbouring vegetation patches and resprouting from underground organs appear to gain relevance after an intense fire.  相似文献   

19.
The effects of plant‐derived smoke and of heat on the emergence of seedlings from seeds were assessed. Seeds had been stored in forest topsoil used for mine site rehabilitation. The study was carried out in a dry sclerophyll, spotted gum (Corymbia maculata), forest community at the Mount Owen open‐cut coal mine in the Hunter Valley region of New South Wales. Samples of the surface 2.5 cm of topsoil were either exposed to cool smoke from eucalypt foliage for 60 min, heated to 80°C, or left untreated. Seedling emergence from the seed bank in this soil was then monitored in a glasshouse. Within the first month, smoke alone promoted a 4.3‐fold increase in the density of seedlings relative to control. There were 540 emergents per m2 in the control and 2309 per m2 in the smoke treated topsoil. Many annual and perennial herbs emerged but grasses responded most strongly to smoke. Germination in seven of the 20 grass species was promoted by smoke. Smoke promoted the germination of some introduced species as well as native species, and accelerated the rate at which seedlings emerged, although these differences sometimes declined with time. Heat also stimulated germination but smoke and heat stimuli appeared to be complementary in their promotion of seedling emergence from the topsoil seed bank. Each treatment increased the density of different species, enhanced the species richness of different components of the seed bank, and had different effects on the rate of emergence. The results suggest that increased seed germination in the field immediately following a moderate intensity fire may sometimes be the result of smoke stimulation and sometimes the result of heat stimulation of the soil seed bank. These findings may have important implications for minesite revegetation programs where topsoils are replaced after mining and rapid germination of seeds stored in these soils is required during short periods when conditions are favourable for germination.  相似文献   

20.
We assessed the size of seed bank, species diversity and similarity between seed bank and standing vegetation in four oriental beech (Fagus orientalis Lipsky) community types of the central Hyrcanian forests of northern Iran. For this purpose a total of 52 relevés was established in two associations and two subassociations of the beech forests, and six soil samples (20 × 20 cm square and to a depth of 10 cm) were collected in each relevé in mid-spring, after the germination season had ended. Soil seed bank was investigated using the seedling emergence method. A total of 63 species, 57 genera and 36 families was represented in the persistent soil seed bank of the forest communities. The seed bank contained 28 species not found as adult plants in the vegetation, but these were mostly early successional species. Size of the seed bank ranged from 3740 to 4676 individuals m−2 in the Rusco hyrcani-Fagetum orientalis and Danae racemosae-Fagetum orientalis associations, respectively. Species composition of seed banks and aboveground vegetation had low similarity with an average of 24.3% in the four plant communities, because only 38% of the species were the same in the vegetation and the seed banks. Most seeds in the seed bank were from early successional species, and the only tree with a large persistent seed bank was the fast-growing pioneer Alnus subcordata. DCA ordination also demonstrated low similarity between soil seed bank and vegetation. The soil seed banks of the four beech communities did not differ significantly in size, composition, diversity and uniformity. Although above ground vegetation in the four community types is floristically distinct, there is considerable overlap among the soil seed banks because they contain in a similar way early successional species. Further, the absence of typical forest species in the soil seed bank indicates that restoration of forest tree species cannot rely on the soil seed bank.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号