首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Neutral—Niche Debate: A Philosophical Perspective   总被引:1,自引:0,他引:1  
Ecological communities around the world are under threat while a consensus theory of community structure remains elusive. In the last decade ecologists have struggled with two seemingly opposing theories: niche-based theory that explains diversity with species’ differences and the neutral theory of biodiversity that claims that much of the diversity we observe can be explained without explicitly invoking species’ differences. Although ecologists are increasingly attempting to reconcile these two theories, there is still much resistance against the neutral theory of biodiversity. Here we argue that the dispute between the two theories is a classic example of the dichotomy between philosophical perspectives, realism and instrumentalism. Realism is associated with specific, small-scale and detailed explanations, whereas instrumentalism is linked to general, large-scale, but less precise accounts. Recognizing this will help ecologists get both niche-based and neutral theories in perspective as useful tools for understanding biodiversity patterns.  相似文献   

2.
The relative importance of contemporary and historical processes is central for understanding biodiversity patterns. While several studies show that past conditions can partly explain the current biodiversity patterns, the role of history remains elusive. We reconstructed palaeo‐drainage basins under lower sea level conditions (Last Glacial Maximum) to test whether the historical connectivity between basins left an imprint on the global patterns of freshwater fish biodiversity. After controlling for contemporary and past environmental conditions, we found that palaeo‐connected basins displayed greater species richness but lower levels of endemism and beta diversity than did palaeo‐disconnected basins. Palaeo‐connected basins exhibited shallower distance decay of compositional similarity, suggesting that palaeo‐river connections favoured the exchange of fish species. Finally, we found that a longer period of palaeo‐connection resulted in lower levels of beta diversity. These findings reveal the first unambiguous results of the role played by history in explaining the global contemporary patterns of biodiversity.  相似文献   

3.
Understanding patterns in biodiversity is a core ambition in ecological research. Existing ecological theories focusing on individual species, populations, communities, or niches aid in understanding the determinants of biodiversity patterns, yet very few general models for biodiversity have emerged from simplistic approaches. We propose that a systematic, low-dimensional representation of environmental space with building blocks adopted from gradient, niche, metapopulation and assembly theory may unite old and new aspects of biodiversity theory and improve our understanding of variation in terrestrial biodiversity.We propose the term ecospace to cover the local conditions and resources underlying diversity. Our definition of ecospace encompasses abiotic position, biotic expansion and spatiotemporal continuity, which all affect the biodiversity of a biotope (α-diversity). Position refers to placement along abiotic gradients such as temperature, soil pH and fertility, leading to environmental filtering known from classical community theory. Expansion represents the build-up and diversification of organic matter that are not strictly given by position. Continuity refers to the spatiotemporal extension of position and expansion.Biodiversity is scale dependent. The contribution of one biotope to large scale diversity must be estimated by considering its unique contribution to the species richness of the surrounding landscape or region or to the biodiversity of the entire planet. In addition to the relationship between ecospace and biotope richness (α-diversity), we also propose a relation between the uniqueness of the biotope ecospace and the unique contribution of species to the surrounding larger-scale richness.Whereas the impacts of ecospace position and continuity on biodiversity have been studied in isolation, studies comparing or combining them are rare. Furthermore, biotic expansion has never been fully developed as a determinant of biodiversity, ignoring the megadiverse carbon-depending groups of insects and fungi. Precursors of the ecospace concept have been presented over the last 70 years, but they were never fully developed conceptually for terrestrial biodiversity or applied to prediction of biodiversity.Ecospace unites classical and – at times – contradicting theories such as niche theory, island biogeography theory and a suite of community assembly theories into one framework for further development of a general theory of terrestrial biodiversity.  相似文献   

4.
The causes of biodiversity patterns are controversial and elusive due to complex environmental variation, covarying changes in communities, and lack of baseline and null theories to differentiate straightforward causes from more complex mechanisms. To address these limitations, we developed general diversity theory integrating metabolic principles with niche-based community assembly. We evaluated this theory by investigating patterns in the diversity and distribution of soil bacteria taxa across four orders of magnitude variation in spatial scale on an Antarctic mountainside in low complexity, highly oligotrophic soils. Our theory predicts that lower temperatures should reduce taxon niche widths along environmental gradients due to decreasing growth rates, and the changing niche widths should lead to contrasting α- and β-diversity patterns. In accord with the predictions, α-diversity, niche widths and occupancies decreased while β-diversity increased with increasing elevation and decreasing temperature. The theory also successfully predicts a hump-shaped relationship between α-diversity and pH and a negative relationship between α-diversity and salinity. Thus, a few simple principles explained systematic microbial diversity variation along multiple gradients. Such general theory can be used to disentangle baseline effects from more complex effects of temperature and other variables on biodiversity patterns in a variety of ecosystems and organisms.  相似文献   

5.
Contribution of rarity and commonness to patterns of species richness   总被引:5,自引:0,他引:5  
There is little understanding in ecology as to how biodiversity patterns emerge from the distribution patterns of individual species. Here we consider the question of the contributions of rare (restricted range) and common (widespread) species to richness patterns. Considering a species richness pattern, is most of the spatial structure, in terms of where the peaks and troughs of diversity lie, caused by the common species or the rare species (or neither)? Using southern African and British bird richness patterns, we show here that commoner species are most responsible for richness patterns. While rare and common species show markedly different species richness patterns, most spatial patterning in richness is caused by relatively few, more common, species. The level of redundancy we found suggests that a broad understanding of what determines the majority of spatial variation in biodiversity may be had by considering only a minority of species.  相似文献   

6.
陆地植物群落物种多样性维持机制   总被引:21,自引:2,他引:19  
从空间尺度和特定生物区系两个尺度对物种多样性的维持机制进行了综述.在大的空间尺度,简述了引起物种多样性存在差异的物理和自然因子的作用,包括植物群落的历史和年龄、梯度变化(纬度梯度、水分梯度、海拔梯度、土壤养分梯度)、面积效应和隔离程度;针对特定生物区系,从生物因素(生产力、种间关系、林隙动态)和非生物因素(演替、干扰及空间异质性、人类活动)方面论述其与物种多样性之间的关系.  相似文献   

7.
DNA from soil mirrors plant taxonomic and growth form diversity   总被引:1,自引:0,他引:1  
Ecosystems across the globe are threatened by climate change and human activities. New rapid survey approaches for monitoring biodiversity would greatly advance assessment and understanding of these threats. Taking advantage of next-generation DNA sequencing, we tested an approach we call metabarcoding: high-throughput and simultaneous taxa identification based on a very short (usually <100 base pairs) but informative DNA fragment. Short DNA fragments allow the use of degraded DNA from environmental samples. All analyses included amplification using plant-specific versatile primers, sequencing and estimation of taxonomic diversity. We tested in three steps whether degraded DNA from dead material in soil has the potential of efficiently assessing biodiversity in different biomes. First, soil DNA from eight boreal plant communities located in two different vegetation types (meadow and heath) was amplified. Plant diversity detected from boreal soil was highly consistent with plant taxonomic and growth form diversity estimated from conventional above-ground surveys. Second, we assessed DNA persistence using samples from formerly cultivated soils in temperate environments. We found that the number of crop DNA sequences retrieved strongly varied with years since last cultivation, and crop sequences were absent from nearby, uncultivated plots. Third, we assessed the universal applicability of DNA metabarcoding using soil samples from tropical environments: a large proportion of species and families from the study site were efficiently recovered. The results open unprecedented opportunities for large-scale DNA-based biodiversity studies across a range of taxonomic groups using standardized metabarcoding approaches.  相似文献   

8.
The idea of a unifying theory of biodiversity linking the diverse array of macroecological patterns into a common theoretical framework is very appealing. We explore this idea to examine currently proposed unified theories of biodiversity (UTBs) and their predictions. Synthesizing the literature on the macroecological patterns of mammals, we critically evaluate the evidence to support these theories. We find general qualitative support for the UTBs' predictions within mammals, but rigorous testing is hampered by the types of data typically collected in studies of mammals. In particular, abundance is rarely estimated for entire mammalian communities or of individual species in multiple locations, reflecting the logistical challenges of studying wild mammal populations. By contrast, there are numerous macroecological patterns (especially allometric scaling relationships) that are extremely well characterized for mammals, but which fall outside the scope of current UTBs. We consider how these theories might be extended to explain mammalian biodiversity patterns more generally. Specifically, we suggest that UTBs need to incorporate the dimensions of geographical space, species' traits and time to reconcile theory with pattern.  相似文献   

9.
青藏高原高寒草地地下生物多样性: 进展、问题与展望   总被引:2,自引:0,他引:2  
栖息于土壤中的微生物和微型动物种类繁多、数量巨大, 在对地上生物多样性的调控和在生态系统功能与服务的维系中, 具有举足轻重的作用。虽然对土壤微生物以及土壤动物已经开展了广泛的调查, 但是整体上对于地下生物多样性的分布格局、驱动机制及其对全球变化的响应与适应过程, 仍缺乏深刻的认识。青藏高原是全球变化的敏感区域, 其中高寒草地是高原最主要的植被类型, 占高原面积的60%左右, 在高寒生态系统生物多样性维持中具有重要意义。近年来, 已有大量研究关注于高寒草地地下生物多样性, 但是缺乏系统的总结与论述。基于此, 本文从细菌、真菌、古菌、线虫、节肢动物五大土壤生物类群出发, 阐述了青藏高原高寒草地的地下物种丰富度、分布格局及其影响因素, 重点探讨了它们对气候变化和人类活动的响应, 并就未来高寒草地地下生物多样性亟需关注的关键问题进行了展望, 包括: (1)地下各个生物类群的分布格局、各类群之间的联系及驱动机制; (2)地上与地下生物多样性耦联的机制; (3)地下生物多样性对生态系统功能和健康的影响; (4)地下生物多样性的调控实验研究。  相似文献   

10.
乔慧捷  胡军华 《生物多样性》2022,30(10):22456-607
生命形成的过程极其漫长, 经历了地球系统复杂的沧海桑田变化。当前人类所观察到的物种分布格局的形成除了由物种本身特征决定外, 还受到环境变化、人类活动以及各种随机事件的影响。受限于实验条件、时间、经费、人力等诸多因素, 我们尚无法完整地观察并记录到物种多样性形成的全过程, 只能通过片段化数据来推测该过程。信息科学中包括数值模拟在内的仿真技术以其高效、可控及全过程记录等优势, 能从某种程度上解决物种多样性格局形成过程中的部分数据黑箱问题。本文介绍了数值模拟的概念和工作原理及在物种多样性研究中应用的特点, 列举了物种生态位、扩散模式、种间互作及物种分布应对气候变化等方面的数值模拟研究, 基于已有研究系统地介绍了如何综合上述数值模拟研究构建虚拟物种、气候和场景来解释物种多样性的形成与维持机制, 并阐述了数值模拟在物种多样性研究中的优缺点及应用前景。  相似文献   

11.
Organismal movement is ubiquitous and facilitates important ecological mechanisms that drive community and metacommunity composition and hence biodiversity. In most existing ecological theories and models in biodiversity research, movement is represented simplistically, ignoring the behavioural basis of movement and consequently the variation in behaviour at species and individual levels. However, as human endeavours modify climate and land use, the behavioural processes of organisms in response to these changes, including movement, become critical to understanding the resulting biodiversity loss. Here, we draw together research from different subdisciplines in ecology to understand the impact of individual‐level movement processes on community‐level patterns in species composition and coexistence. We join the movement ecology framework with the key concepts from metacommunity theory, community assembly and modern coexistence theory using the idea of micro–macro links, where various aspects of emergent movement behaviour scale up to local and regional patterns in species mobility and mobile‐link‐generated patterns in abiotic and biotic environmental conditions. These in turn influence both individual movement and, at ecological timescales, mechanisms such as dispersal limitation, environmental filtering, and niche partitioning. We conclude by highlighting challenges to and promising future avenues for data generation, data analysis and complementary modelling approaches and provide a brief outlook on how a new behaviour‐based view on movement becomes important in understanding the responses of communities under ongoing environmental change.  相似文献   

12.
Ecological theory suggests that communities are not random combinations of species but rather the results of community assembly processes filtering and sorting species that are able to coexist together. To date, such processes (i.e., assembly rules) have been inferred from observed spatial patterns of biodiversity combined with null model approaches, but relatively few attempts have been made to assess how these processes may be changing through time. Specifically, in the context of the ongoing biodiversity crisis and global change, understanding how processes shaping communities may be changing and identifying the potential drivers underlying these changes become increasingly critical. Here, we used time series of 460 French freshwater fish communities and assessed both functional and phylogenetic diversity patterns to determine the relative importance of two key assembly rules (i.e., habitat filtering and limiting similarity) in shaping these communities over the last two decades. We aimed to (a) describe the temporal changes in both functional and phylogenetic diversity patterns, (b) determine to what extent temporal changes in processes inferred through the use of standardized diversity indices were congruent, and (c) test the relationships between the dynamics of assembly rules and both climatic and biotic drivers. Our results revealed that habitat filtering, although already largely predominant over limiting similarity, became more widespread over time. We also highlighted that phylogenetic and trait‐based approaches offered complementary information about temporal changes in assembly rules. Finally, we found that increased environmental harshness over the study period (especially higher seasonality of temperature) led to an increase in habitat filtering and that biological invasions increased functional redundancy within communities. Overall, these findings underlie the need to develop temporal perspectives in community assembly studies, as understanding ongoing temporal changes could provide a better vision about the way communities could respond to future global changes.  相似文献   

13.
Biologists seek an understanding of the processes underlying spatial biodiversity patterns. Neutral theory links those patterns to dispersal, speciation and community drift. Here, we advance the spatially explicit neutral model by representing the metacommunity as a network of smaller communities. Analytic theory is presented for a set of equilibrium diversity patterns in networks of communities, facilitating the exploration of parameter space not accessible by simulation. We use this theory to evaluate how the basic properties of a metacommunity – connectivity, size, and speciation rate – determine overall metacommunity γ -diversity, and how that is partitioned into α - and β -components. We find spatial structure can increase γ -diversity relative to a well-mixed model, even when θ is held constant. The magnitude of deviations from the well-mixed model and the partitioning into α - and β -diversity is related to the ratio of migration and speciation rates. γ -diversity scales linearly with metacommunity size even as α - and β -diversity scale nonlinearly with size.  相似文献   

14.
Beta diversity describes how local communities within an area or region differ in species composition/abundance. There have been attempts to use changes in beta diversity as a biotic indicator of disturbance, but lack of theory and methodological caveats have hampered progress. We here propose that the neutral theory of biodiversity plus the definition of beta diversity as the total variance of a community matrix provide a suitable, novel, starting point for ecological applications. Observed levels of beta diversity (BD) can be compared to neutral predictions with three possible outcomes: Observed BD equals neutral prediction or is larger (divergence) or smaller (convergence) than the neutral prediction. Disturbance might lead to either divergence or convergence, depending on type and strength. We here apply these ideas to datasets collected on oribatid mites (a key, very diverse soil taxon) under several regimes of disturbances. When disturbance is expected to increase the heterogeneity of soil spatial properties or the sampling strategy encompassed a range of diverging environmental conditions, we observed diverging assemblages. On the contrary, we observed patterns consistent with neutrality when disturbance could determine homogenization of soil properties in space or the sampling strategy encompassed fairly homogeneous areas. With our method, spatial and temporal changes in beta diversity can be directly and easily monitored to detect significant changes in community dynamics, although the method itself cannot inform on underlying mechanisms. However, human‐driven disturbances and the spatial scales at which they operate are usually known. In this case, our approach allows the formulation of testable predictions in terms of expected changes in beta diversity, thereby offering a promising monitoring tool.  相似文献   

15.
Biogeography is an implicit and fundamental component of almost every dimension of modern biology, from natural selection and speciation to invasive species and biodiversity management. However, biogeography has rarely been integrated into human or veterinary medicine nor routinely leveraged for global health management. Here we review the theory and application of biogeography to the research and management of human infectious diseases, an integration we refer to as ‘pathogeography’. Pathogeography represents a promising framework for understanding and decomposing the spatial distributions, diversity patterns and emergence risks of human infectious diseases into interpretable components of dynamic socio‐ecological systems. Analytical tools from biogeography are already helping to improve our understanding of individual infectious disease distributions and the processes that shape them in space and time. At higher levels of organization, biogeographical studies of diseases are rarer but increasing, improving our ability to describe and explain patterns that emerge at the level of disease communities (e.g. co‐occurrence, diversity patterns, biogeographic regionalisation). Even in a highly globalized world most human infectious diseases remain constrained in their geographic distributions by ecological barriers to the dispersal or establishment of their causal pathogens, reservoir hosts and/or vectors. These same processes underpin the spatial arrangement of other taxa, such as mammalian biodiversity, providing a strong empirical ‘prior’ with which to assess the potential distributions of infectious diseases when data on their occurrence is unavailable or limited. In the absence of quality data, generalized biogeographic patterns could provide the earliest (and in some cases the only) insights into the potential distributions of many poorly known or emerging, or as‐yet‐unknown, infectious disease risks. Encouraging more community ecologists and biogeographers to collaborate with health professionals (and vice versa) has the potential to improve our understanding of infectious disease systems and identify novel management strategies to improve local, global and planetary health.  相似文献   

16.
Theories of biodiversity rest on several macroecological patterns describing the relationship between species abundance and diversity. A central problem is that all theories make similar predictions for these patterns despite disparate assumptions. A troubling implication is that these patterns may not reflect anything unique about organizational principles of biology or the functioning of ecological systems. To test this, we analyze five datasets from ecological, economic, and geological systems that describe the distribution of objects across categories in the United States. At the level of functional form (‘first-order effects’), these patterns are not unique to ecological systems, indicating they may reveal little about biological process. However, we show that mechanism can be better revealed in the scale-dependency of first-order patterns (‘second-order effects’). These results provide a roadmap for biodiversity theory to move beyond traditional patterns, and also suggest ways in which macroecological theory can constrain the dynamics of economic systems.  相似文献   

17.
Although soil invertebrates play a decisive role in maintaining ecosystem functioning, little is known about their structural composition in Alpine soils and how their abundances are affected by the currently ongoing land‐use changes. In this study, we re‐assessed the soil macrofauna community structure of managed and abandoned Alpine pastureland, which has already been evaluated 14 years earlier. Our results confirm clear shifts in the community composition after abandonment, in that (1) Chilopoda and Diplopoda were recorded almost exclusively on the abandoned sites, (2) Coleoptera larvae and Diptera larvae were more abundant on the abandoned than on the managed sites, whereas (3) Lumbricidae dominated on the managed sites. By revisiting managed and abandoned sites, we infer community patterns caused by abandonment such as changes in the epigeic earthworm community structure, and we discuss seasonal and sampling effects. Our case study improves the still limited understanding of spatio‐temporal biodiversity patterns of Alpine soil communities.  相似文献   

18.
土壤微生物多样性的形成、维持和变化机理是生态学研究的核心内容, 已有大量研究表明土壤微生物群落构建不仅受到土壤环境的深刻影响, 也与植物群落物种多样性密切相关。由于自然群落中土壤环境和植物多样性协同影响土壤微生物, 难以区分和厘清植物多样性和土壤环境对土壤微生物多样性构建的各自影响。该研究基于在青藏高原高寒草地构建的人工草地群落, 比较分析了3种优势禾本科牧草单播和混播及施肥处理13年后, 土壤细菌和真菌物种多样性及其与植物群落和土壤理化因子的关系。主要结果: 1)与各单播处理相比, 3种牧草两两混播一致显著降低了土壤细菌群落的丰富度和多样性, 其中变形菌门和放线菌门相对丰度显著增加, 而酸杆菌门、拟杆菌门和浮霉菌门相对丰度显著减小; 牧草混播对土壤真菌多样性没有显著影响。2)牧草混播显著降低了土壤pH和土壤全氮含量, 增加了土壤全磷含量; 施肥显著降低土壤pH, 增加了土壤速效磷含量; 但这些土壤理化因子的变化不足以解释土壤细菌和真菌多样性在处理间的差异。3)施肥显著提高了植物群落地上生物量, 降低了植物物种丰富度, 土壤细菌多样性随植物物种丰富度增加而减小, 而与植物生物量变化无关。该研究在野外条件下, 通过长期控制实验揭示了高寒草地禾草混播并不增加土壤微生物多样性, 为高寒地区牧草混播人工草地实践提供了科学依据。  相似文献   

19.
With 2285 species of higher plants crammed into 471 km2, the flora of South Africa's Cape Peninsula is exceptionally rich. Similar sized areas in other Mediterranean-climate region biodiversity hot-spots support between 4.7 and 2.7 times fewer species. The high plant species richness of the Cape Peninsula is due to the exceptionally high turnover between moderately species-rich sites in different habitats (beta diversity) and between sites in similar habitats along geographical gradients (gamma diversity). Highest beta diversity, encompassing almost complete turnover, was recorded along soil fertility gradients. Although similar patterns for these independent components explain the richness of other regions in the Cape Floristic Region, it is the very long and steep habitat gradients of the Cape Peninsula that makes this region exceptionally rich. Furthermore, the flora is characterized by a high degree of rarity, a phenomenon that undoubtedly influences the turnover. Future research should focus on developing a biological and ecological understanding of the different forms of rarity and integrating this into management plans for the maintenance of biodiversity.  相似文献   

20.
A central goal of conservation science is to identify the most important habitat patches for maintaining biodiversity on a landscape. Spatial biodiversity patterns are often used for such assessments, and patches that harbor unique diversity are generally prioritized over those with high community similarity to other areas. This places an emphasis on biodiversity representation, but removing a patch can have cascading effects on biodiversity persistence in the remaining ecological communities. Metacommunity theory provides a mechanistic route to the linking of biodiversity patterns on a landscape with the subsequent dynamics of diversity loss after habitat is degraded. Using spatially explicit neutral theory, I focus on the situation where spatial patterns of diversity and similarity are generated by the structure of dispersal networks and not environmental gradients. I find that gains in biodiversity representation are nullified by losses in persistence, and as a result the effects of removing a patch on metacommunity diversity are essentially independent of complementarity or other biodiversity patterns. In this scenario, maximizing protected area and not biodiversity representation is the key to maintaining diversity in the long term. These results highlight the need for a broader understanding of how conservation paradigms perform under different models of metacommunity dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号