首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  • Drought is one of the most serious environmental factors limiting production of sugarcane worldwide. In order to assess the influence of gibberellins (GA3) on drought and plant growth, along with associated physio‐biochemical attributes, expression of eight drought‐responsive genes were quantified and analysed.
  • At grand growth stage (120 DAP) two sugarcane varieties (CoLk94184, CoPK05191) were exposed to drought by withholding irrigation. GA3 (35 ppm) was applied using battery‐operated uniform controlled dispensing sprayer twice at 1‐week intervals on 2‐week drought‐stressed plants. Physio‐biochemical attributes including antioxidant enzyme activities were estimated following standard protocols. RT‐PCR was performed to visualise the drought‐associated gene expression patterns.
  • Drought triggered a reduction in RWC and chlorophyll content but these recovered when droughted plants were exposed to GA3. Proline content increased many fold in both varieties under stress, but decreased under the influence of GA3. There was a mixed response of antioxidant enzyme activity, which distinctly declined after GA3 exposure, together with a lesser reduction in dry matter content over that of control plants. With increasing stress, expression of pyrroline‐5‐carboxylase synthetase (P5CS) and betaine‐aldehyde dehydrogenase genes was observed, selectively up‐regulated in CoPK05191. Expression of proline oxidase/transporter was high in CoPK05191 but diminished along with proline content after exposure to GA3. CoLk94184 showed no significant difference in P5CS gene expression under stress condition, whereas expression of betaine‐aldehyde dehydrogenase gene was unchanged in response to stress.
  • Results demonstrated that exposure of droughted plants to GA3 not only led to recovery of activity of drought‐associated physio‐biochemical attributes, but also minimised impact on cane dry weight and quality. Further, GA3 application caused differential gene expression that possibly triggers increased responsiveness towards drought tolerance in sugarcane.
  相似文献   

2.
3.
4.
5.
The HUB2 gene encoding histone H2B monoubiquitination E3 ligase is involved in seed dormancy, flowering timing, defence response and salt stress regulation in Arabidopsis thaliana. In this study, we used the cauliflower mosaic virus (CaMV) 35S promoter to drive AtHUB2 overexpression in cotton and found that it can significantly improve the agricultural traits of transgenic cotton plants under drought stress conditions, including increasing the fruit branch number, boll number, and boll‐setting rate and decreasing the boll abscission rate. In addition, survival and soluble sugar, proline and leaf relative water contents were increased in transgenic cotton plants after drought stress treatment. In contrast, RNAi knockdown of GhHUB2 genes reduced the drought resistance of transgenic cotton plants. AtHUB2 overexpression increased the global H2B monoubiquitination (H2Bub1) level through a direct interaction with GhH2B1 and up‐regulated the expression of drought‐related genes in transgenic cotton plants. Furthermore, we found a significant increase in H3K4me3 at the DREB locus in transgenic cotton, although no change in H3K4me3 was identified at the global level. These results demonstrated that AtHUB2 overexpression changed H2Bub1 and H3K4me3 levels at the GhDREB chromatin locus, leading the GhDREB gene to respond quickly to drought stress to improve transgenic cotton drought resistance, but had no influence on transgenic cotton development under normal growth conditions. Our findings also provide a useful route for breeding drought‐resistant transgenic plants.  相似文献   

6.
  • Brachypodium distachyon (L.) has recently emerged as a model for temperate grasses for investigating the molecular basis of plant–pathogen interactions. Phytoalexin deficient 4 (PAD4) plays a regulatory role in mediating expression of genes involved in plant defence.
  • In this research, we generated transgenic B. distachyon plants constitutively overexpressing AtPAD4. Two transgenic B. distachyon lines were verified using PCR and GUS phenotype.
  • Constitutive expression of AtPAD4 in B. distachyon enhanced resistance to Puccinia brachypodii. Pbrachypodii generated less urediniospores on transgenic than on wild‐type plants. AtPAD4 overexpression enhanced salicylic acid (SA) levels in B. distachyon‐infected tissues. qRT‐PCR showed that expression of pathogenesis‐related 1 (PR1) and other defence‐related genes were up‐regulated in transformed B. distachyon following infection with P. brachypodii.
  • Our results indicate that AtPAD4 overexpression in B. distachyon plants led to SA accumulation and induced PR gene expression that reduced the rate of colonisation by P. brachypodii.
  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Phytochrome‐interacting factor 1 (PIF1) inhibits light‐dependent seed germination. The specific function of PIF1 in seed germination is partly due to its high level of expression in imbibed seeds, but the associated regulatory factors have not been identified. Here we show that mutation of the early flowering in short days (EFS) gene, encoding an H3K4 and H3K36 methyltransferase, decreases the level of H3K36me2 and H3K36me3 but not H3K4me3 at the PIF1 locus, reduces the targeting of RNA polymerase II to the PIF1 locus, and reduces mRNA expression of PIF1 in imbibed seeds. Consistently, the efs mutant geminated even under the phyBoff condition, and had an expression profile of PIF1 target genes similar to that of the pif1 mutant. Introduction of an EFS transgene into the efs mutant restored the level of H3K36me2 and H3K36me3 at the PIF1 locus, the high‐level expression of PIF1 mRNA, the expression pattern of PIF1 target genes, and the light‐dependent germination of these seeds. Introduction of a PIF1 transgene into the efs mutant also restored the expression pattern of PIF1 target genes and light‐dependent germination in imbibed seeds, but did not restore the flowering phenotype. Taken together, our results indicate that EFS is necessary for high‐level expression of PIF1 mRNA in imbibed seeds.  相似文献   

17.
Epigenetic mechanisms play a major role in heterosis, partly as a result of the remodeling of epigenetic modifications in F1 hybrids. Based on chromatin immunoprecipitation‐sequencing (ChIP‐Seq) analyses, we show that at the allele level extensive histone methylation remodeling occurred for a subset of genomic loci in reciprocal F1 hybrids of Oryza sativa (rice) cultivars Nipponbare and 93‐11, representing the two subspecies japonica and indica. Globally, the allele modification‐altered loci in leaf or root of the reciprocal F1 hybrids involved ?12–43% or more of the genomic regions carrying either of two typical histone methylation markers, H3K4me3 (>21 000 genomic regions) and H3K27me3 (>11 000 genomic regions). Nevertheless, at the total modification level, the majority (from ?43 to >90%) of the modification‐altered alleles lay within the range of parental additivity in the hybrids because of concerted alteration in opposite directions, consistent with an overall attenuation of allelic differences in the modifications. Importantly, of the genomic regions that did show non‐additivity in total modification level by either marker in the two tissues of hybrids, >80% manifested transgressivity, which involved genes enriched in specific functional categories. Extensive allele‐level alteration of H3K4me3 alone was positively correlated with genome‐wide changes in allele‐level gene expression, whereas at the total level, both H3K4me3 and H3K27me3 remodeling, although affecting just a small number of genes, contributes to the overall non‐additive gene expression to variable extents, depending on tissue/marker combinations. Our results emphasize the importance of allele‐level analysis in hybrids to assess the remodeling of epigenetic modifications and their relation to changes in gene expression.  相似文献   

18.
19.
Genes required for fungal secondary metabolite production are usually clustered, co‐regulated and expressed in stationary growth phase. Chromatin modification has an important role in co‐regulation of secondary metabolite genes. The virulence factor dothistromin, a relative of aflatoxin, provided a unique opportunity to study chromatin level regulation in a highly fragmented gene cluster that is switched on during early exponential growth phase. We analysed three histone modification marks by ChIP‐qPCR and gene deletion in the pine pathogen Dothistroma septosporum to determine their effects on dothistromin gene expression across a time course and at different loci of the dispersed gene cluster. Changes in gene expression and dothistromin production were associated with changes in histone marks, with higher acetylation (H3K9ac) and lower methylation (H3K9me3, H3K27me3) during early exponential phase at the onset of dothistromin production. But while H3K27me3 directly influenced dothistromin genes dispersed across chromosome 12, effects of H3K9 acetylation and methylation were orchestrated mainly through a centrally located pathway regulator gene DsAflR. These results revealed that secondary metabolite production can be controlled at the chromatin‐level despite the genes being dispersed. They also suggest that patterns of chromatin modification are important in adaptation of a virulence factor for a specific role in planta.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号