Parkinson's disease (PD) is characterized by selective and progressive degeneration of dopaminergic neurons in the substantia nigra (SN). Lipopolysaccharide (LPS) can induce chronic inflammation and has been widely used to study the pathogenesis of PD. In this study, a single intracerebroventricular injection of LPS was used to induce neurotoxic effects on dopaminergic neurons in Sprague–Dawley rats. The long‐term neurotoxic effects of LPS were evaluated at different time points. Microglia were activated in the hippocampus and striatum at 4 weeks, and in the SN at 24 weeks. Astrocytes were activated in the hippocampus and nigrostriatal system at 2 and 24 weeks. The expression of brain‐derived neurotrophic factor in the SN increased at 4 weeks and decreased after 12 weeks, and tyrosine hydroxylase‐positive neurons in the SN were shown to have an atrophic appearance, with cell loss evident after 24 weeks. Phospho‐α‐synuclein expression, a reflection of parkinsonian pathogenesis, increased at 12 weeks, and peaked at 24 weeks. Abnormal motor behavior appeared at 16 weeks and lasted up to 48 weeks. These results indicate that microglia are activated for several months after a single, low dose injection of LPS, which eventually results in progressive and selective damage to dopaminergic neurons in the SN. 相似文献
Exposure to IR has been shown to induce the formation of senescence markers, a phenotype that coincides with lifelong delayed repair and regeneration of irradiated tissues. We hypothesized that IR‐induced senescence markers could persist long‐term in vivo, possibly contributing to the permanent reduction in tissue functionality. Here, we show that mouse tissues exposed to a sublethal dose of IR display persistent (up to 45 weeks, the maximum time analyzed) DNA damage foci and increased p16INK4a expression, two hallmarks of cellular senescence and aging. BrdU‐labeling experiments revealed that IR‐induced damaged cells are preferentially eliminated, at least partially, in a tissue‐dependent manner. Unexpectedly, the accumulation of damaged cells was found to occur independent from the DNA damage response modulator p53, and from an intact immune system, as their levels were similar in wild‐type and Rag2?/? γC?/? mice, the latter being deficient in T, B, and NK cells. Together, our results provide compelling evidence that exposure to IR induces long‐term expression of senescence markers in vivo, an effect that may contribute to the reduced tissue functionality observed in cancer survivors. 相似文献
It remains unclear whether and how cardiomyocytes contribute to the inflammation in chronic heart failure (CHF). We recently reviewed the capacity of cardiomyocytes to initiate inflammation, by means of expressing certain immune receptors such as toll‐like receptors (TLRs) that respond to pathogen‐ and damage‐associated molecular patterns (PAMP and DAMP). Previous studies observed TLR4‐mediated inflammation within days of myocardial infarction (MI). This study examined TLR4 expression and function in cardiomyocytes of failing hearts after 4 weeks of MI in rats. The increases of TLR4 mRNA and proteins, as well as inflammatory cytokine production, were observed in both the infarct and remote myocardium. Enhanced immunostaining for TLR4 was observed in cardiomyocytes but not infiltrating leucocytes. The injection of lentivirus shRNA against TLR4 into the infarcted heart decreased inflammatory cytokine production and improved heart function in vivo. Accordingly, in cardiomyocytes isolated from CHF hearts, increases of TLR4 mRNA and proteins were detected. More robust binding of TLR4 with lipopolysaccharide (LPS), a PAMP ligand for TLR4, and heat shock protein 60 (HSP60), a DAMP ligand for TLR4, was observed in CHF cardiomyocytes under a confocal microscope. The maximum binding capacity (Bmax) of TLR4 was increased for LPS and HSP60, whereas the binding affinity (Kd) was not significantly changed. Furthermore, both LPS and HSP60 induced more robust production of inflammatory cytokines in CHF cardiomyocytes, which was reduced by TLR4‐blocking antibodies. We conclude that the expression, ligand‐binding capacity and pro‐inflammatory function of cardiomyocyte TLR4 are up‐regulated after long‐term MI, which promote inflammation and exacerbate heart failure. 相似文献
Nutrient allocation and usage plays an important part in regulating the onset and progression of age‐related functional declines. Here, we describe a heterozygous mutation in Drosophila (dFatp) that alters nutrient distribution and multiple aspects of physiology. dFatp mutants have increased lifespan and stress resistance, altered feeding behavior and fat storage, and increased mobility. Concurrently, mutants experience impairment of cardiac function. We show that endurance exercise reverses increased lipid storage in the myocardium and the deleterious cardiac function conferred by dFatp mutation. These findings establish a novel conserved genetic target for regulating lifespan and physiology in aging animals. These findings also highlight the importance of varying exercise conditions in assessing aging functions of model organisms. 相似文献
Periodontal ligament stem cells (PDLSCs), as potential “seed cells” for periodontal tissue repair and regeneration, require to be expanded in vitro for a large scale. Senescence of PDLSCs occurred during long‐term culture may compromise the therapeutic effects of PDLSCs. Medium supplements may be useful in antisenescence. However, the effects and mechanisms of vitamin C (Vc) treatment on PDLSCs during long‐term culture are still unclear. In this study, we identified that Vc‐treated PDLSCs cells maintained a slender morphology, higher growth rate and migration capacity, stemness, and osteogenic differentiation capability during a long‐term culture. Moreover, we also identified that Notch3 was significantly upregulated during the cell senescence, and Vc treatment alleviated the senescence of PDLSCs through inhibition of Notch3 during long‐term culture. In summary, Vc treatment suppressed PDLSCs senescence by reducing the expression of Notch3 and might be a simple and useful strategy to inhibit cellular senescence during the cell long‐term culture. 相似文献
Senescent cells play important roles in both physiological and pathological processes, including cancer and aging. In all cases, however, senescent cells comprise only a small fraction of tissues. Senescent phenotypes have been studied largely in relatively homogeneous populations of cultured cells. In vivo, senescent cells are generally identified by a small number of markers, but whether and how these markers vary among individual cells is unknown. We therefore utilized a combination of single‐cell isolation and a nanofluidic PCR platform to determine the contributions of individual cells to the overall gene expression profile of senescent human fibroblast populations. Individual senescent cells were surprisingly heterogeneous in their gene expression signatures. This cell‐to‐cell variability resulted in a loss of correlation among the expression of several senescence‐associated genes. Many genes encoding senescence‐associated secretory phenotype (SASP) factors, a major contributor to the effects of senescent cells in vivo, showed marked variability with a subset of highly induced genes accounting for the increases observed at the population level. Inflammatory genes in clustered genomic loci showed a greater correlation with senescence compared to nonclustered loci, suggesting that these genes are coregulated by genomic location. Together, these data offer new insights into how genes are regulated in senescent cells and suggest that single markers are inadequate to identify senescent cells in vivo. 相似文献
Cellular senescence, which is known to halt proliferation of aged and stressed cells, plays a key role against cancer development and is also closely associated with organismal aging. While increased insulin‐like growth factor (IGF) signaling induces cell proliferation, survival and cancer progression, disrupted IGF signaling is known to enhance longevity concomitantly with delay in aging processes. The molecular mechanisms involved in the regulation of aging by IGF signaling and whether IGF regulates cellular senescence are still poorly understood. In this study, we demonstrate that IGF‐1 exerts a dual function in promoting cell proliferation as well as cellular senescence. While acute IGF‐1 exposure promotes cell proliferation and is opposed by p53, prolonged IGF‐1 treatment induces premature cellular senescence in a p53‐dependent manner. We show that prolonged IGF‐1 treatment inhibits SIRT1 deacetylase activity, resulting in increased p53 acetylation as well as p53 stabilization and activation, thus leading to premature cellular senescence. In addition, either expression of SIRT1 or inhibition of p53 prevented IGF‐1‐induced premature cellular senescence. Together, these findings suggest that p53 acts as a molecular switch in monitoring IGF‐1‐induced proliferation and premature senescence, and suggest a possible molecular connection involving IGF‐1‐SIRT1‐p53 signaling in cellular senescence and aging. 相似文献
Reactive oxygen species (ROS) exposure triggers granulosa cells'' (GCs) senescence, which is an important causal factor for premature ovarian failure (POF). However, underlying mechanism in this process remains unknown. In our study, we observed increased ROS levels in POF ovarian tissues, POF patient follicular GCs and cyclophosphamide (CTX) pretreated GCs. Correspondingly, increased SIAH1, reduced TRF2 and GC senescence were also found in these cases. Silencing of SIAH1 rescued ROS‐induced TRF2 reduction and cell senescence in GCs. Moreover, SIAH1 co‐localized with TRF2 in the cytoplasm, facilitating its ubiquitination degradation, further leading to telomere abnormalities in GCs. In conclusion, our findings indicate that ROS induces telomere abnormalities by augmenting SIAH1‐mediated TRF2 degradation, leading to cell senescence in GCs in POF processing. 相似文献
In senescent cells, a DNA damage response drives not only irreversible loss of replicative capacity but also production and secretion of reactive oxygen species (ROS) and bioactive peptides including pro‐inflammatory cytokines. This makes senescent cells a potential cause of tissue functional decline in aging. To our knowledge, we show here for the first time evidence suggesting that DNA damage induces a senescence‐like state in mature postmitotic neurons in vivo. About 40–80% of Purkinje neurons and 20–40% of cortical, hippocampal and peripheral neurons in the myenteric plexus from old C57Bl/6 mice showed severe DNA damage, activated p38MAPkinase, high ROS production and oxidative damage, interleukin IL‐6 production, heterochromatinization and senescence‐associated β‐galactosidase activity. Frequencies of these senescence‐like neurons increased with age. Short‐term caloric restriction tended to decrease frequencies of positive cells. The phenotype was aggravated in brains of late‐generation TERC?/? mice with dysfunctional telomeres. It was fully rescued by loss of p21(CDKN1A) function in late‐generation TERC?/?CDKN1A?/? mice, indicating p21 as the necessary signal transducer between DNA damage response and senescence‐like phenotype in neurons, as in senescing fibroblasts and other proliferation‐competent cells. We conclude that a senescence‐like phenotype is possibly not restricted to proliferation‐competent cells. Rather, dysfunctional telomeres and/or accumulated DNA damage can induce a DNA damage response leading to a phenotype in postmitotic neurons that resembles cell senescence in multiple features. Senescence‐like neurons might be a source of oxidative and inflammatory stress and a contributor to brain aging. 相似文献
Cellular senescence has been implicated in normal aging, tissue homeostasis, and tumor suppression. Although p53 has been shown to be a central mediator of cellular senescence, the signaling pathway by which it induces senescence remains incompletely understood. In this study, we have shown that both Akt and p21 are required to induce cellular senescence in response to p53 expression. In a p53‐induced senescence model, we found that Akt activation was essential for inducing a cellular senescence phenotype. Surprisingly, Akt inhibition did not abolish p53‐induced cell cycle arrest, but it suppressed the increase in intracellular reactive oxygen species (ROS) levels. The results of the cell cycle and morphological analysis suggest that p53 induced quiescence, not senescence, following Akt inhibition. Conversely, the inhibition of p21 induction abolished cell cycle arrest but did not affect the p53‐induced increase in ROS levels. Additionally, p21 and Akt separately controlled cell cycle arrest and ROS levels, respectively, during H‐Ras‐induced senescence in human normal fibroblasts. The mechanistic analysis revealed that Akt increased ROS levels through NOX4 induction, and increased Akt‐dependent NF‐κB binding to the NOX4 promoter is responsible for NOX4 induction upon p53 expression. We further showed that Akt activation upon p53 expression is mediated by mammalian target of rapamycin complex 2. In addition, p53‐mediated IL6 and IL8 induction was abrogated by Akt inhibition, suggesting that Akt activation is also required for the senescence‐associated secretory phenotype. Collectively, these results suggest that p53 simultaneously controls multiple pathways to induce cellular senescence through p21 and Akt. 相似文献
The regulation of gene expression by microRNAs (miRNAs) is critical for normal development and physiology. Conversely, miRNA function is frequently impaired in cancer, and other pathologies, either by aberrant expression of individual miRNAs or dysregulation of miRNA synthesis. Here, we have investigated the impact of global disruption of miRNA biogenesis in primary fibroblasts of human or murine origin, through the knockdown of DGCR8, an essential mediator of the synthesis of canonical miRNAs. We find that the inactivation of DGCR8 in these cells results in a dramatic antiproliferative response, with the acquisition of a senescent phenotype. Senescence triggered by DGCR8 loss is accompanied by the upregulation of the cell‐cycle inhibitor p21CIP1. We further show that a subset of senescence‐associated miRNAs with the potential to target p21CIP1 is downregulated during DGCR8‐mediated senescence. Interestingly, the antiproliferative response to miRNA biogenesis disruption is retained in human tumor cells, irrespective of p53 status. In summary, our results show that defective synthesis of canonical microRNAs results in cell‐cycle arrest and cellular senescence in primary fibroblasts mediated by specific miRNAs, and thus identify global miRNA disruption as a novel senescence trigger. 相似文献
Disruption of telomere maintenance pathways leads to accelerated entry into cellular senescence, a stable proliferative arrest that promotes aging‐associated disorders in some mammals. The budding yeast CST complex, comprising Cdc13, Stn1, and Ctc1, is critical for telomere replication, length regulation, and end protection. Although mammalian homologues of CST have been identified recently, their role and function for telomere maintenance in normal somatic human cells are still incompletely understood. Here, we characterize the function of human Stn1 in cultured human fibroblasts and demonstrate its critical role in telomere replication, length regulation, and function. In the absence of high telomerase activity, shRNA‐mediated knockdown of hStn1 resulted in aberrant and fragile telomeric structures, stochastic telomere attrition, increased telomere erosion rates, telomere dysfunction, and consequently accelerated entry into cellular senescence. Oxidative stress augmented the defects caused by Stn1 knockdown leading to almost immediate cessation of cell proliferation. In contrast, overexpression of hTERT suppressed some of the defects caused by hStn1 knockdown suggesting that telomerase can partially compensate for hStn1 loss. Our findings reveal a critical role for human Stn1 in telomere length maintenance and function, supporting the model that efficient replication of telomeric repeats is critical for long‐term viability of normal somatic mammalian cells. 相似文献
The enteric nervous system is of great importance for maintenance and proper function of the gastrointestinal tract. The aim of this study was to quantify myenteric neuronal subpopulations expressing calcitonin gene-related peptide (CGRP), galanin, neuropeptide Y (NPY), somatostatin, vasoactive intestinal peptide (VIP) and nitric oxide synthase (NOS) in rat colon in vivo and after culturing. Further we investigated if culturing in the presence of CGRP, galanin, VIP, S-nitroso-N-acetyl-d,l-penicillamine (SNAP, a NO donor) or N-nitro-l-arginine methyl ester (l-NAME, a NOS inhibitor) affect neuronal survival.
After 4 days of culturing the proportions of neurons expressing CGRP, NPY, somatostatin or VIP increased as compared to in vivo, while the proportions of neurons expressing galanin or NOS did not change. Neuronal survival was unaffected after culturing in media enriched with CGRP, galanin, VIP, SNAP or l-NAME. Neither did addition of CGRP, galanin nor VIP to the cultures affect the relative numbers of neurons expressing CGRP, galanin or VIP respectively. Addition of SNAP or l-NAME did not change the percentage of neurons expressing NOS.
In conclusion, cultured rat colonic myenteric neurons increase their expression of CGRP, NPY, somatostatin and VIP, suggesting that these neuropeptides are of importance for neuronal survival. 相似文献