首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
The rising trend in concentrations of ground‐level ozone (O3) – a common air pollutant and phytotoxin – currently being experienced in some world regions represents a threat to agricultural yield. Soybean (Glycine max (L.) Merr.) is an O3‐sensitive crop species and is experiencing increasing global demand as a dietary protein source and constituent of livestock feed. In this study, we collate O3 exposure‐yield data for 49 soybean cultivars, from 28 experimental studies published between 1982 and 2014, to produce an updated dose–response function for soybean. Different cultivars were seen to vary considerably in their sensitivity to O3, with estimated yield loss due to O3 ranging from 13.3% for the least sensitive cultivar to 37.9% for the most sensitive, at a 7‐h mean O3 concentration (M7) of 55 ppb – a level frequently observed in regions of the USA, India and China in recent years. The year of cultivar release, country of data collection and type of O3 exposure used were all important explanatory variables in a multivariate regression model describing soybean yield response to O3. The data show that the O3 sensitivity of soybean cultivars increased by an average of 32.5% between 1960 and 2000, suggesting that selective breeding strategies targeting high yield and high stomatal conductance may have inadvertently selected for greater O3 sensitivity over time. Higher sensitivity was observed in data from India and China compared to the USA, although it is difficult to determine whether this effect is the result of differential cultivar physiology, or related to local environmental factors such as co‐occurring pollutants. Gaining further understanding of the underlying mechanisms that govern the sensitivity of soybean cultivars to O3 will be important in shaping future strategies for breeding O3‐tolerant cultivars.  相似文献   

3.
4.
5.
  • Relative growth rate (RGR) plays an important role in plant adaptation to the light environment through the growth potential/survival trade‐off. RGR is a complex trait with physiological and biomass allocation components. It has been argued that herbivory may influence the evolution of plant strategies to cope with the light environment, but little is known about the relation between susceptibility to herbivores and growth‐related functional traits.
  • Here, we examined in 11 evergreen tree species from a temperate rainforest the association between growth‐related functional traits and (i) species’ shade‐tolerance, and (ii) herbivory rate in the field. We aimed at elucidating the differential linkage of shade and herbivory with RGR via growth‐related functional traits.
  • We found that RGR was associated negatively with shade‐tolerance and positively with herbivory rate. However, herbivory rate and shade‐tolerance were not significantly related. RGR was determined mainly by photosynthetic rate (Amax) and specific leaf area (SLA). Results suggest that shade tolerance and herbivore resistance do not covary with the same functional traits. Whereas shade‐tolerance was strongly related to Amax and to a lesser extent to leaf mass ratio (LMR) and dark respiration (Rd), herbivory rate was closely related to allocation traits (SLA and LMR) and slightly associated with protein content.
  • The effects of low light on RGR would be mediated by Amax, while the effects of herbivory on RGR would be mediated by SLA. Our findings suggest that shade and herbivores may differentially contribute to shape RGR of tree species through their effects on different resource‐uptake functional traits.
  相似文献   

6.
We investigated the effects of elevated ozone concentration (E‐O3) on CH4 and N2O emission from paddies with two rice cultivars: an inbred Indica cultivar Yangdao 6 (YD6) and a hybrid one II‐you 084 (IIY084), under fully open‐air field conditions in China. A mean 26.7% enhancement of ozone concentration above the ambient level (A‐O3) significantly reduced CH4 emission at tillering and flowering stages leading to a reduction of seasonal integral CH4 emission by 29.6% on average across the two cultivars. The reduced CH4 emission is associated with O3‐induced reduction in the whole‐plant biomass (?13.2%), root biomass (?34.7%), and maximum tiller number (?10.3%), all of which curbed the carbon supply for belowground CH4 production and its release from submerged soil to atmosphere. Although no significant difference was detected between the cultivars in the CH4 emission response to E‐O3, a larger decrease in CH4 emission with IIY084 (?33.2%) than that with YD6 (?7.0%) was observed at tillering stage, which may be due to the larger reduction in tiller number in IIY084 by E‐O3. Additionally, E‐O3 reduced seasonal mean NOx flux by 5.7% and 11.8% with IIY084 and YD6, respectively, but the effects were not significant statistically. We found that the relative response of CH4 emission to E‐O3 was not significantly different from those reported in open‐top chamber experiments. This study has thus confirmed that increasing ozone concentration would mitigate the global warming potential of CH4 and suggested consideration of the feedback mechanism between ozone and its precursor emission into the projection of future ozone effects on terrestrial ecosystem.  相似文献   

7.
  • Zinc (Zn) is an essential micronutrient for the growth and development of plants. However, Zn deficiency is a common abiotic stress causing yield loss in crop plants. This study elucidates the mechanisms of Zn deficiency tolerance in maize through physiological and molecular techniques.
  • Maize lines tolerant (PAC) and sensitive (DAC) to Zn deficiency were examined physiologically and by atomic absorption spectrometry (AAS). Proteins, H2O2, SOD, POD, membrane permeability and gene expression (using real‐time PCR) of roots and shoots of both maize lines were assessed.
  • Zn deficiency had no significant effect on root parameters compared with control plants in PAC and DAC but showed a substantial reduction in shoot parameters in DAC. AAS showed a significant decrease in Zn concentrations in both roots and shoots of DAC but not PAC under Zn deficiency, implying that Zn deficiency tolerance mechanisms exist in PAC. Consistently, total protein and membrane permeability were significantly reduced in DAC but not PAC in both roots and shoots under Zn deficiency in comparison with Zn‐sufficient plants. Real‐time PCR showed that expression of ZmZIP1, ZmZIP4 and ZmIRT1 transporter genes significantly increased in roots of PAC, but not in DAC due to Zn deficiency compared with controls. The H2O2 concentration dramatically increased in roots of DAC but not PAC. Moreover, tolerant PAC showed a significant increase in POD and SOD activity due to Zn deficiency, suggesting that POD‐ and SOD‐mediated antioxidant defence might provide tolerance, at least in part, under Zn deficiency in PAC.
  • This study provides an essential background for improving Zn biofortification of maize.
  相似文献   

8.
9.
10.
Defence reactions occurring in resistant (cv. Gankezaomi) and susceptible (cv. Ganmibao) muskmelon leaves were investigated after inoculating with Colletotrichum lagenarium. Lesion restriction in resistant cultivars was associated with the accumulation of hydrogen peroxide (H2O2). The activity of antioxidants catalase (CAT) and peroxidase (POD) significantly increased in both cultivars after inoculation, while levels of both CAT and POD activity were significantly higher in the resistant cultivar. Ascorbate peroxidase (APX) increased in both cultivars after inoculation, and level of APX activity was significantly higher in the resistant cultivar. Glutathione reductase (GR) activity significantly increased in both cultivars following inoculation, but was higher in the resistant cultivar, resulting in higher levels of ascorbic acid (AsA) and reduced glutathione (GSH). Phenylalanine ammonia lyase (PAL) significantly increased in inoculated leaves of both cultivars, resulting in higher levels of total phenolic compounds and flavonoids. The pathogenesis‐related proteins chitinase (CHT) and β‐1, 3‐glucanase (GLU) significantly increased following inoculation with higher activity in the resistant cultivar. These findings show that resistance of muskmelon plants against C. lagenarium is associated with the rapid accumulation of H2O2, resulting in altered cellular redox status, accumulation of pathogenesis‐related proteins, activation of phenylpropanoid pathway to accumulation of phenolic compounds and flavonoids.  相似文献   

11.
Four modern cultivars of winter wheat (Triticum aestivum L.) were grown under elevated ozone concentration (E‐O3) in fully open‐air field conditions in China for three consecutive growth seasons from 2007 to 2009. Results indicated that a mean 25% enhancement above the ambient ozone concentration (A‐O3, 45.7 p.p.b.) significantly reduced the grain yield by 20% with significant variation in the range from 10% to 35% among the combinations of cultivar and season. The varietal difference in the yield response to E‐O3 became nonsignificant when the anova was done by omitting one cultivar which showed unstable response to E‐O3 among the seasons. The reduction of individual grain mass accounted mostly for the yield loss by E‐O3, and showed significant difference between the cultivars. The response of relative yield to E‐O3 was not significantly different from those reported in China, Europe and India on the basis of experiments in open‐top chambers. Our results thus confirmed the rising threat of surface O3 on wheat production worldwide in the near future. Various countermeasures are urgently needed against the crop losses due to O3 such as mitigation of the increase in surface O3 with stricter pollution control, and enhancement of the wheat tolerance against O3 by breeding and management.  相似文献   

12.
Ozone (O3) concentrations in periurban areas in East Asia are sufficiently high to decrease crop yield. However, little is known about the genotypic differences in O3 sensitivity in winter wheat in relation to year of cultivar release. This paper reports genotypic variations in O3 sensitivity in 20 winter wheat cultivars released over the past 60 years in China highlighting O3‐induced mechanisms. Wheat plants were exposed to elevated O3 (82 ppb O3, 7 h day?1) or charcoal‐filtered air (<5 ppb O3) for 21 days in open top chambers. Responses to O3 were assessed by the levels of antioxidative activities, protein alteration, membrane lipid peroxidation, gas exchange, leaf chlorophyll, dark respiration and growth. We found that O3 significantly reduced foliar ascorbate (?14%) and soluble protein (?22%), but increased peroxidase activity (+46%) and malondialdehyde (+38%). Elevated O3 depressed light saturated net photosynthetic rate (?24%), stomatal conductance (?8%) and total chlorophyll (?11%), while stimulated dark respiration (+28%) and intercellular CO2 concentration (+39%). O3 also reduced overall plant growth, but to a greater extent in root (?32%) than in shoot (?17%) biomass. There was significant genotypic variation in potential sensitivity to O3 that did not correlate to observed O3 tolerance. Sensitivity to O3 in cultivars of winter wheat progressed with year of release and correlated with stomatal conductance and dark respiration in O3‐exposed plants. O3‐induced loss in photosynthetic rate was attributed primarily to impaired activity of mesophyll cells and loss of integrity of cellular membrane as evidenced by increased intercellular CO2 concentration and lipid peroxidation. Our findings demonstrated that higher sensitivity to O3 in the more recently released cultivars was induced by higher stomatal conductance, larger reduction in antioxidative capacity and lower levels of dark respiration leading to higher oxidative damage to proteins and integrity of cellular membranes.  相似文献   

13.
Two modern cultivars [Yangmai16 (Y16) and Yangfumai 2 (Y2)] of winter wheat (Triticum aestivum L.) with almost identical phenology were investigated to determine the impacts of elevated ozone concentration (E‐O3) on physiological characters related to photosynthesis under fully open‐air field conditions in China. The plants were exposed from the initiation of tillering to final harvest, with E‐O3 of 127% of the ambient ozone concentration (A‐O3). Measurements of pigments, gas exchange rates, chlorophyll a fluorescence and lipid oxidation were made in three replicated plots throughout flag leaf development. In cultivar Y2, E‐O3 significantly accelerated leaf senescence, as indicated by increased lipid oxidation as well as faster declines in pigment amounts and photosynthetic rates. The lower photosynthetic rates were mainly due to nonstomatal factors, e.g. lower maximum carboxylation capacity, electron transport rates and light energy distribution. In cultivar Y16, by contrast, the effects of E‐O3 were observed only at the very last stage of flag leaf ageing. Since the two cultivars had almost identical phenology and very similar leaf stomatal conductance before senescence, the greater impacts of E‐O3 on cultivars Y2 than Y16 cannot be explained by differential ozone uptake. Our findings will be useful for scientists to select O3‐tolerant wheat cultivars against the rising surface [O3] in East and South Asia.  相似文献   

14.
  • Drought is one of the most serious environmental factors limiting production of sugarcane worldwide. In order to assess the influence of gibberellins (GA3) on drought and plant growth, along with associated physio‐biochemical attributes, expression of eight drought‐responsive genes were quantified and analysed.
  • At grand growth stage (120 DAP) two sugarcane varieties (CoLk94184, CoPK05191) were exposed to drought by withholding irrigation. GA3 (35 ppm) was applied using battery‐operated uniform controlled dispensing sprayer twice at 1‐week intervals on 2‐week drought‐stressed plants. Physio‐biochemical attributes including antioxidant enzyme activities were estimated following standard protocols. RT‐PCR was performed to visualise the drought‐associated gene expression patterns.
  • Drought triggered a reduction in RWC and chlorophyll content but these recovered when droughted plants were exposed to GA3. Proline content increased many fold in both varieties under stress, but decreased under the influence of GA3. There was a mixed response of antioxidant enzyme activity, which distinctly declined after GA3 exposure, together with a lesser reduction in dry matter content over that of control plants. With increasing stress, expression of pyrroline‐5‐carboxylase synthetase (P5CS) and betaine‐aldehyde dehydrogenase genes was observed, selectively up‐regulated in CoPK05191. Expression of proline oxidase/transporter was high in CoPK05191 but diminished along with proline content after exposure to GA3. CoLk94184 showed no significant difference in P5CS gene expression under stress condition, whereas expression of betaine‐aldehyde dehydrogenase gene was unchanged in response to stress.
  • Results demonstrated that exposure of droughted plants to GA3 not only led to recovery of activity of drought‐associated physio‐biochemical attributes, but also minimised impact on cane dry weight and quality. Further, GA3 application caused differential gene expression that possibly triggers increased responsiveness towards drought tolerance in sugarcane.
  相似文献   

15.
The responses of five tomato cultivars (L. esculentum Mill) of different degrees of salt tolerance were examined over a range of 0 to 140 mM NaCl applied for 3 and 10 weeks. Judged by both Na and Cl accumulations and maintenance of K, Ca and Mg contents with increasing salinity, the most tolerant cultivars (Pera and GC-72) showed different responses. The greater salt tolerance of cv Pera was associated with a higher Cl and Na accumulation and a lower K content in the shoot than those found in the other cultivars, typical of a halophytic response to salinity. However, the greater salt tolerance of cv GC-72 was associated with a retention of Na and Cl in the root, restriction of their translocation to the shoot and maintenance of potassium selectivity under saline conditions. The salt tolerance mechanisms that operated in the remaining cultivars were similar to that of cv GC-72, as at first they excluded Na and Cl from the shoots, accumulating them in the roots; with longer treatment, the ability to regulate Na and Cl concentrations in the plant was lost only in the most salt sensitive cultivar (Volgogradskij), resulting in a massive influx of both ions into the shoot.The salt sensitivity of some tomato cultivars to salinity could be due to both the toxic effect of Na and Cl ions and nutritional imbalance induced by salinity, as plant growth was inversely correlated with Na and Cl contents and directly correlated with K and Ca contents. This study displays that there is not a single salt tolerance mechanism, since different physiological responses among tomato cultivars have been found.  相似文献   

16.
Italy is the largest rice‐producing country in the European Union. In Italy, only japonica cultivars are listed in the Italian National Register. Almost all of the rice production is concentrated in the Po Valley, where the rice water weevil Lissorhoptrus oryzophilus Kuschel was first detected and settled. This study investigated the performance of this pest in terms of feeding, reproduction and plant injury on 10 rice cultivars chosen among the most widely grown in Italy. No‐choice experiments were conducted to evaluate the plant susceptibility to larval attack and to find out how cultivars can influence the adult leaf area consumption. The results gave evidence of different types of attack depending on the density of the insect (0.6 adults/plant vs. 0.9 adults/plant), the cultivar type and climatic conditions. Different cultivars with the same level of infestation gave different results in terms of productivity. Production was significantly affected by the larval presence in 4 of the 10 cultivars tested. A different population structure reflected a different damage severity. Statistically different values for total adult leaf area consumption were found according to adult female age and to the cultivar.  相似文献   

17.
18.
The contribution of antioxidant defence systems in different tolerance to direct and bicarbonate‐induced Fe deficiency was evaluated in two pea cultivars (Kelvedon, tolerant and Lincoln, susceptible). Fe deficiency enhanced lipid peroxidation and H2O2 concentration in roots of both cultivars, particularly in the sensitive one grown under bicarbonate supply. The results obtained on antioxidant activities (SOD, CAT, POD) suggest that H2O2 accumulation could be due to an overproduction of this ROS and, at the same time, to a poor capacity to detoxify it. Moreover, under bicarbonate supply the activity of POD isoforms was reduced only in the sensitive cultivar, while in the tolerant one a new isoform was detected, suggesting that POD activity might be an important contributor to pea tolerance to Fe deficiency. The presence of bicarbonate also resulted in stimulation of GR, MDHAR and DHAR activities, part of the ASC‐GSH pathway, which was higher in the tolerant cultivar than in the sensitive one. Overall, while in the absence of Fe only slight differences were reported between the two cultivars, the adaptation of Kelvedon to the presence of bicarbonate seems to be related to its greater ability to enhance the antioxidant response at the root level.  相似文献   

19.
The wild relatives of bread wheat ( Triticum aestivum ) are valued by plant breeders for their genetic diversity. However, increasing levels of nitrogen (N) deposition and ground‐level ozone (O3) threaten plant biodiversity in the Mediterranean and Near‐East, a hotspot for many crop wild relatives. Knowledge of the effect of these air pollutants in combination is still limited, but early indications are that effects vary depending on the level of pollutants, and on the sensitivity of the species to N and O3. This study examined the responses of four important wheat wild relatives ( Aegilops tauschii , Aegilops speltoides , Triticum dicoccoides and Triticum monococcum ) and one modern wheat cultivar ( T. aestivum ‘Cadenza’) to treatments of N (equivalent to 50 kg ha?1 year?1 ammonium nitrate) and O3 (100 ppb for 21 days), alone and in combination. Measurements included root, shoot and seed biomass, and electrolyte ratios. The O3 sensitivity of A. tauschii and T. aestivum ‘Cadenza’ were exacerbated by the addition of N, while A. speltoides was found to be nitrophilous, with N ameliorating the negative effect of O3. Both T. aestivum ‘Cadenza’ and T. dicoccoides produced immature seed heads, with the cultivar's seed head biomass reduced in response to O3 and N + O3 while that of T. dicoccoides was largely unaffected. These data suggest that all four wild relatives are likely to be affected when N and O3 air pollutants co‐occur, and there in situ populations may therefore be at risk. Equally, the results of this study can inform use of their beneficial traits by wheat breeders, and alert them to the inadvertent inclusion of N and O3 sensitivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号