首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Long‐term elevated nitrogen (N) input from anthropogenic sources may cause soil acidification and decrease crop yield, yet the response of the belowground microbial community to long‐term N input alone or in combination with phosphorus (P) and potassium (K) is poorly understood. We explored the effect of long‐term N and NPK fertilization on soil bacterial diversity and community composition using meta‐analysis of a global dataset. Nitrogen fertilization decreased soil pH, and increased soil organic carbon (C) and available N contents. Bacterial taxonomic diversity was decreased by N fertilization alone, but was increased by NPK fertilization. The effect of N fertilization on bacterial diversity varied with soil texture and water management, but was independent of crop type or N application rate. Changes in bacterial diversity were positively related to both soil pH and organic C content under N fertilization alone, but only to soil organic C under NPK fertilization. Microbial biomass C decreased with decreasing bacterial diversity under long‐term N fertilization. Nitrogen fertilization increased the relative abundance of Proteobacteria and Actinobacteria, but reduced the abundance of Acidobacteria, consistent with the general life history strategy theory for bacteria. The positive correlation between N application rate and the relative abundance of Actinobacteria indicates that increased N availability favored the growth of Actinobacteria. This first global analysis of long‐term N and NPK fertilization that differentially affects bacterial diversity and community composition provides a reference for nutrient management strategies for maintaining belowground microbial diversity in agro‐ecosystems worldwide.  相似文献   

2.
3.
Recent studies have shown that relatively undisturbed plant communities, such as woodland and pasture, have generally low seed persistence, while seed longevity in frequently disturbed habitats, such as arable fields, is high. In addition, seed mass and shape were found to be closely linked to the living conditions of plants. The objective of the present study was to show how farming practice modifies these seed traits in the arable weed seed bank.On 67.4 ha of arable land at the Scheyern Research Station in Germany, conventional arable use was converted to organic farming, to a reduced-tillage system and to set-aside. During the six subsequent years, seed bank data were collected at 283 sampling points to analyse the effects of (1) the farming systems (long-term effects), (2) individual crops (short-term effects) and (3) vegetation cover.Set-aside arable land favoured a disk- or needle-like seed shape, greater mass and reduced seed longevity. Similarly, organic farming significantly increased seed mass and decreased longevity. Therefore, both types of land use reduced the selection for small and persistent seeds with a spherical shape. By contrast, an increasing persistence under reduced tillage suggested a higher selection pressure. The most consistent effect was that seed longevity increased with tillage frequency, independent from the farming system. Both high seed masses and a compact seed shape were frequently associated with a high crop cover.The results prove that beyond the properties of living plants the arable farming practice also significantly impacts the seed traits in the soil seed bank.  相似文献   

4.
为了探明多年免耕下农田恶性杂草发生的机理,提高保护性耕作下作物对农田恶性杂草持久稳定的抑制效果,依据陕西安塞田间4a的定位试验, 采用小区调查取样和室内实验相结合的方法,从物种组成、密度特征、多样性以及相似性特征等方面,研究了黄土丘陵旱作农区大豆(Glycine max)、玉米(Zea mays)、红小豆(Semen Phaseoli)、马铃薯(Solanum tuberosum)在翻耕化肥(CF)、翻耕有机肥(CM)、翻耕无肥(CN)、免耕化肥(NF)、免耕有机肥(NM)、免耕无肥(NN)等水平下的农田土壤种子库.结果表明: (1) 4种作物24种土样中共萌发出12个物种1965株幼苗,隶属于7科12属.1年生杂草占94%,棒头草(fugax nees ex steud)、苋菜(Acalypha australis)、马唐(Digitaria sanguinalis)、早熟禾(Poa sphondylodes)为优势种,占87%.(2)在0~20cm土层不同处理间,土壤种子库的密度变动于(282.9±63.4)~(7482.5±1078.3)粒·m- 2,其中,红小豆小区>马铃薯小区>大豆小区>玉米小区;翻耕小区>免耕小区;有机肥小区>化肥小区>无肥小区,差异极显著. (3)土壤种子库密度NM红小豆最高,NN玉米最低;丰富度指数CF大豆为2.30;NN红小豆为0.29;多样性指数NN大豆为5.56,CF红小豆为0.45;生态优势度NF玉米为1.35,CF大豆为0.17.玉米、大豆是黄土丘陵沟壑旱作农区免耕下农田抑制杂草最为适宜的作物, NM玉米、NF大豆和NM大豆是黄土丘陵沟壑旱作农区较优的耕作管理方式,其农田的生态效应是能够竞争性抑制恶性杂草的蔓延,优化土壤环境,杂草的多样性高且比较均衡,杂草的土壤种子库密度低.  相似文献   

5.
Question: What are the main broad‐scale spatial and temporal gradients in species composition of arable weed communities and what are their underlying environmental variables? Location: Czech Republic and Slovakia. Methods: A selection of 2653 geographically stratified relevés sampled between 1954–2003 was analysed with direct and indirect ordination, regression analysis and analysis of beta diversity. Results: Major changes in weed species composition were associated with a complex gradient of increasing altitude and precipitation and decreasing temperature and base status of the soils. The proportion of hemicryptophytes increased, therophytes and alien species decreased, species richness increased and beta diversity decreased with increasing altitude. The second most important gradient of weed species composition was associated with seasonal changes, resulting in striking differences between weed communities developed in spring and summer. In summer, weed communities tended to have more neophytes, higher species richness and higher beta diversity. The third gradient reflected long‐term changes in weed vegetation over past decades. The proportion of hemicryptophytes and neophytes increased, while therophytes and archaeophytes decreased, as did species richness over time. The fourth gradient was due to crop plants. Cultures whose management involves less disturbances, such as cereals, harboured less geophytes and neophytes, and had higher species richness but lower beta diversity than frequently disturbed cultures, such as root crops. Conclusions: Species composition of Central European weed vegetation is mainly influenced by broad‐scale climatic and edaphic factors, but its variations due to seasonal dynamics and long‐term changes in agricultural management are also striking. Crop plants and crop‐specific management affect it to a lesser, but still significant extent.  相似文献   

6.
Agricultural intensification in Europe during the past 30 years has led to changes in compositional and functional weed structure in agroecosystems as well as increases in the prominence of alien weeds. Irrigation is a major driver of agricultural intensification, particularly in semi‐arid zones of the Mediterranean. In the past few decades, irrigated land has expanded in semi‐arid agricultural lands in northeastern Spain. The goals of this study were to identify long‐term temporal changes in compositional and functional weed communities in annual (i.e. maize crops) and perennial (i.e. orchards) irrigated crops of this area and determine whether these changes differentially affect native and alien plants. Changes in the diversity, composition and functional groups of the weed communities in fruit‐tree orchards and maize crops were assessed using plant surveys in 1989 and 2009. During the studied period, a decrease was recorded in the diversity of native species in the fruit‐tree orchards; this decrease was accompanied by an increase in alien weed diversity and a general homogenisation of species in the weed community. In the maize crops, the diversity values of native and alien plants changed little during 20 years. The identification of functional groups revealed that most of the species whose cover increased in the fruit‐tree orchards were graminoid alien species that perform C4 photosynthesis and disperse seed via water or a combination of vectors. In the maize crops, the identified functional groups did not differ in the proportion of species whose cover changed between 1989 and 2009. Hence, in irrigated orchards the observed changes in the weed community and the prominence of alien species are mediated by the selection of a set of traits that let species to overcome management filters. Similarly, the stability of functional composition of weed communities in maize fields is the result of the selection of species functionally similar to the crop.  相似文献   

7.
稻鸭共作能有效控制稻田杂草的危害, 但是它对后茬小麦田杂草的影响及其控制作用尚没有详细的报道。我们于2000-2012年对江苏丹阳稻鸭共作兼秸秆还田的有机稻麦连作田土壤杂草种子库进行了连续13年的观察实验。结果显示, 稻鸭共作兼秸秆还田的措施使看麦娘(Alopecurus aequalis)、通泉草(Mazus japonicus)、碎米荠(Cardamine hirsuta)等18种麦田主要杂草的种子库均有较大幅度的降低, 总体的降低幅度高达97%。除了Pielou指数处于小幅波动状态外, 麦田杂草群落多样性指数整体呈下降趋势。丰富度下降表明杂草种子库向种类少、多样性低的方向演变。从Bray-Curtis指数和Jaccard相似性指数也可以得到同样的结论。可见, 连续稻鸭共作兼秸秆还田能够降低下茬的麦田土壤里杂草种子密度及多样性, 控制杂草危害。  相似文献   

8.
The widespread loss of weed diversity and associated ecosystem functions is raising important concerns. Field edges could play a major role in the maintenance of weed functional diversity in arable landscapes as these habitats still harbour high weed diversity, owing to either a reduced farming management intensity and/or to a spillover of species from adjacent perennial field margins. Here, we investigated the taxonomic and functional characteristics of weed species recorded in surveys of field edges and their associated field cores over six consecutive years in 60 arable fields farmed with five crop management strategies. We found that field edges were richer, with species more functionally diverse and composition more stable over years than field core surveys. The distribution of individual functional traits differed between field edges and field cores, with higher values for seed mass and nitrophily (Ellenberg.N), and a wider distribution of specific leaf area values in field edges. The bimodal distribution of plant height and germination period observed in field edges became unimodal in field cores. Field edges harboured species with ecological strategies associated with field cores (ruderal species) plus a conservative strategy which could be explained by a spillover from the adjacent perennial field margins. Crop management strategies impacted field edge flora, though to a lesser extent than the field core flora whereas the functional differences between the field edge and the field core flora were less marked when crop management intensity was lower. These results indicate that field edges harbour a unique assemblage of species and highly contribute to the maintenance of weed diversity in arable landscapes. Future studies should thus focus on the importance of these specific functional traits to the agroecosystem functioning.  相似文献   

9.
10.
Questions: How does disturbance and successional age influence richness, size and composition of the soil seed bank? What is the potential contribution of the soil seed bank to the plant community composition on sites differing in their successional age or disturbance intensity? Location: Experimental Botanical Garden of Göttingen University, central Germany. Methods: Above‐ground vegetation and soil seed bank were studied on formerly arable fields in a 36‐year‐old permanent plot study with five disturbance intensities, ranging from yearly ploughing via mowing to long‐term uninterrupted succession. We compared species compositions, seed densities and functional features of the seed bank and above‐ground vegetation by using several methods in parallel. Results: The seed bank was mainly composed of early successional species typical of strongly disturbed habitats. The difference between seed bank composition and above‐ground vegetation decreased with increasing disturbance intensity. The species of greatest quantitative importance in the seed bank was the non‐native forb Solidago canadensis. Conclusions: The ability of a plant community to regenerate from the soil seed bank dramatically decreases with increasing time since abandonment (successional age) and with decreasing disturbance intensity. The present study underlines that plant species typical of grasslands and woodlands are limited by dispersal capacity, owing to low capacity for accumulation of seeds in the soil and the fact that most species do not build up persistent seed banks. Rare and target species were almost absent from the seed bank and will, after local elimination, depend on reintroduction for continuation of their presence.  相似文献   

11.
A long-term fertilized paddy field under rice/ rape rotation in the Taihu Lake Region was selected to investigate the dynamics of soil weed seed diversity.Four fertilizer treatments were performed,including non-fert-ilizer (NF),chemical fertilizer only (CF),chemical fert-ilizer combined with pig manure (CMF) and chemical fertilizer plus crop stalk (CSF).We recorded the seed numbers and crop yields,estimated the weed seed bank density and identified the kinds of weed seeds in the top-soil (0-15 cm) in the study area using a stereomicroscope.Based on the records,we analyzed the effect of long-term fertilization on soil weed seed bank diversity and the rela-tionship between weed seed diversity and crop yields.Comparing the four treatments,it was found that in the cultivating seasons of both rice and rape,the density of soil weed seed bank was the lowest with the treatment of chemical fertilizer plus crop stalk.Whereas,the total num-ber of species and the weed seed bank diversity was the highest.Furthermore,the crop yields were at maximum and kept constant with this treatment.There was a def-inite correlation between fertilizer treatment and soil weed seed bank diversity and crop yields.It was concluded that balancing the fertilizer management was helpful in main-taining soil weed seed bank diversity,increasing crop yields and alleviating crop yield fluctuation.Therefore,among the four fertilizer treatments,chemical fertilizer plus rice crop stalk treatment was the best one to stimulate the productivity of agricultural ecosystems and simulta-neously protect biodiversity.  相似文献   

12.
2000~2003年连续4年研究了稻鸭共作条件下田间杂草群落的特征及其动态变化规律。结果表明,在长期稻鸭共作条件下,田间杂草密度逐年降低,下降趋势符合阻滞模型y=k+a·ebx,模型参数b反映了杂草种群的下降速率。在稻田6种主要杂草中,水虱草(Fimbristylis miliaceae)、陌上菜(Lindernia procumbens)、丁香蓼(Ludwigia prostrata)种群数量降低较快,鸭舌草(Monochoria vaginalis)、异型莎草(Cyperus difformis)次之,稗(Echinochloa crusgalli)最慢。稻鸭共作使稻田杂草群落的物种多样性持续降低,群落均匀度提高,群落相似性与稻鸭共作前相比逐年降低。说明稻鸭共作改变了田间杂草的群落结构,有利于限制杂草的发生危害。随着稻鸭共作的连年进行,对田间杂草的控制效果逐渐上升,4年后达99%以上。稻鸭共作是稻田替代化学除草的一种非常有效的生物、生态控草措施,具有显著的经济和生态效益。  相似文献   

13.
Forest management practices have the potential to impact upon native vegetation. Most studies focus on the effects of management on the above‐ground vegetation communities, with little attention given to the soil stored seed bank. Here we examine the soil stored seed bank of a long‐term experimental site in south‐eastern Australia, which has experienced timber harvesting and repeated prescribed burning over a 20‐year period. At each of 213 long‐term vegetation measurement plots, 3.5 kg of soil was collected and germinated in a glasshouse over a period of 2 years. Comparisons were made between the experimental treatments considering differences in species richness, abundance and community composition of the understorey seed bank. Logged sites had a higher diversity and abundance of seedlings compared with unlogged sites, which is consistent with observed changes in standing vegetation within 10 years following logging. Prescribed burning resulted in a lower diversity and abundance of seedlings, which contrasts with the increase in species diversity observed in response to frequent fire in standing vegetation. Individual taxa that declined in the seed bank in response to frequent fire were all taxa for which germination is enhanced by exposure to smoke. Contrary to expectations, these did not exhibit a corresponding decline as standing plants. While management actions above ground are having minor impacts, greater effects were seen in the soil stored seed bank.  相似文献   

14.
Biological soil characteristics such as microbial biomass, community structures, activities, and functions may provide important information on environmental and anthropogenic influences on agricultural soils. Diagnostic tools and detailed statistical approaches need to be developed for a reliable evaluation of these parameters, in order to allow classification and quantification of the magnitude of such effects. The DOK long-term agricultural field experiment was initiated in 1978 in Switzerland for the evaluation of organic and conventional farming practices. It includes three representative Swiss farming systems with biodynamic, bio-organic and conventional fertilization and plant protection schemes along with minerally fertilized and unfertilized controls. Effects on microbial soil characteristics induced by the long-term management at two different stages in the crop rotation, i.e. winter wheat after potato or corn, were investigated by analyzing soil bacterial community structures using analysis of PCR-amplified rRNA genes by terminal restriction fragment length polymorphism and ribosomal intergenic spacer analysis. Application of farmyard manure consistently revealed the strongest influence on bacterial community structures and biomass contents. Effects of management and plant protection regimes occurred on an intermediate level, while the two stages in the crop rotation had a marginal influence that was not significant.  相似文献   

15.
A functional group approach was developed for plant and invertebrate assemblages from UK arable fields to assess the variation in functional composition of these highly disturbed, managed systems. Data were taken from the Farm-Scale Evaluations (FSE) of genetically modified herbicide-tolerant (GMHT) crops where the impact of management of the GMHT crop has been assessed for winter and spring sown oilseed rape, beet and maize. Twenty plant and 36 invertebrate functional groups were defined according to trophic behaviour and traits that affect resource capture, quality and availability. The functional composition of the plant community was significantly affected by season of sowing, the type of crop sown and, to a lesser extent, herbicide management. The invertebrate community composition was also affected by crop type and sowing season, but not by management. Resource and consumer groups were positively related, and data provide strong evidence for top-down control of herbivore populations. Two main interaction groups were identified within the arable food web: one between omnivores, generalist predators and detritivores, which are positively associated with monocots, and one between omnivores, parasitoids, sap feeders and leaf chewers, which have a stronger association with dicots. Although management has an impact on within-field arable biodiversity, crop type and sowing season have an overriding effect on the functional composition of plant and invertebrate assemblages in arable systems.  相似文献   

16.
A long-term fertilized paddy field under rice/rape rotation in the Taihu Lake Region was selected to investigate the dynamics of soil weed seed diversity. Four fertilizer treatments were performed, including non-fertilizer (NF), chemical fertilizer only (CF), chemical fertilizer combined with pig manure (CMF) and chemical fertilizer plus crop stalk (CSF). We recorded the seed numbers and crop yields, estimated the weed seed bank density and identified the kinds of weed seeds in the topsoil (0–15 cm) in the study area using a stereomicroscope. Based on the records, we analyzed the effect of long-term fertilization on soil weed seed bank diversity and the relationship between weed seed diversity and crop yields. Comparing the four treatments, it was found that in the cultivating seasons of both rice and rape, the density of soil weed seed bank was the lowest with the treatment of chemical fertilizer plus crop stalk. Whereas, the total number of species and the weed seed bank diversity was the highest. Furthermore, the crop yields were at maximum and kept constant with this treatment. There was a definite correlation between fertilizer treatment and soil weed seed bank diversity and crop yields. It was concluded that balancing the fertilizer management was helpful in maintaining soil weed seed bank diversity, increasing crop yields and alleviating crop yield fluctuation. Therefore, among the four fertilizer treatments, chemical fertilizer plus rice crop stalk treatment was the best one to stimulate the productivity of agricultural ecosystems and simultaneously protect biodiversity. __________ Translated from Biodiversity Science, 2006, 14(6): 461–469 [译自:生物多样性]  相似文献   

17.
The agricultural activity in the Argentine Pampas, characterized by an important trend towards no-till soybean monocropping, has completely transformed the original Pampas landscape into a monotonous scenario with a continuous succession of farms of very low crop diversity. This process has led to soil physical, chemical and biological degradation in those systems. The increase of crop rotation rates in no-till and reduced tillage systems has been proposed as an alternative with reduced negative impact on soils in the context of conventional agriculture. On the other hand, extensive organic farming is also suggested as an alternative to high-input agriculture systems. In this article, we aim to explore how different variations of farming practices and systems impact soil macrofauna, along an edaphoclimatic gradient in the Pampas region. We studied the following systems: natural grassland (Gr) as indicator of the original community, extensive organic farming (Org), conventional agriculture with no-tillage and three crop rotation levels (Nt-R1, Nt-R2 and Nt-R3), and reduced tillage with two levels of crop rotation (Til and Til-R). We assessed soil macrofauna, with emphasis on earthworm, beetle and ant communities; and soil physical and chemical properties. Macrofaunal taxa composition was significantly affected by both management systems and edaphoclimatic conditions. The Gr community had pronounced differences from all the agricultural systems. The earthworm community from Gr had distinctive features from those of most agricultural systems, with Org and Nt-R3 being the most similar to Gr in native and exotic earthworm species, respectively. The beetle community in Org was the most different one, and the communities from the other systems did not show a pattern related to management. Ant community composition was not determined by management systems, but it was affected by edaphoclimatic conditions. All the studied macrofauna groups had a significant co-variation with soil physical and chemical properties, showing that both the characteristics of each soil relative to the geographic location and the effect of management on abiotic soil attributes have an important effect on soil macrofauna. This study confirms that biodiversity is being lost in Pampas soils, which implies a possible threat to the soil capacity to perform the processes that sustain soil functioning and hence plant productivity. Further considerations about the sustainability of the current agricultural model applied in the Argentine Pampas are needed.  相似文献   

18.
Organic farming is often advocated as an approach to mitigate biodiversity loss on agricultural land. The phyllosphere provides a habitat for diverse fungal communities that are important for plant health and productivity. However, it is still unknown how organic farming affects the diversity of phyllosphere fungi in major crops. We sampled wheat leaves from 22 organically and conventionally cultivated fields in Sweden, paired based on their geographical location and wheat cultivar. Fungal communities were described using amplicon sequencing and real‐time PCR. Species richness was higher on wheat leaves from organically managed fields, with a mean of 54 operational taxonomic units (OTUs) compared with 40 OTUs for conventionally managed fields. The main components of the fungal community were similar throughout the 350‐km‐long sampling area, and seven OTUs were present in all fields: Zymoseptoria, Dioszegia fristingensis, Cladosporium, Dioszegia hungarica, Cryptococcus, Ascochyta and Dioszegia. Fungal abundance was highly variable between fields, 103–105 internal transcribed spacer copies per ng wheat DNA, but did not differ between cropping systems. Further analyses showed that weed biomass was the strongest explanatory variable for fungal community composition and OTU richness. These findings help provide a more comprehensive understanding of the effect of organic farming on the diversity of organism groups in different habitats within the agroecosystem.  相似文献   

19.
Abstract. The number of annual weeds were recorded in 752 field experiments in spring‐sown cereal crops conducted in Sweden 1972–1993. Two null hypotheses were tested regarding how the sowing date influenced the weed flora. 1. There is no relationship between the weed flora composition and sowing date. A pCCA (with geographic regions, crop species and soil types as covariables) clearly refuted this hypothesis. Hence, the composition of the weed flora varied depending on sowing date. 2. Species classified as summer annuals, winter annuals and germination generalists (that can germinate substantially in both spring and autumn) do not differ in their placement along the first ordination axis in the pCCA, i.e. according to sowing date. An ANOVA was unable to reject this hypothesis. Hence, germination syndrome classification did not explain the observed community differences related to sowing date. These results illustrate the importance of the date of disturbance for any secondary succession involving a seed bank and also the importance of annual dormancy cycles in seed banks.  相似文献   

20.
为揭示不同施肥方式(纯施化肥、有机肥配施化肥、秸秆还田配施有机无机肥、有机无机复合肥)对稻麦两熟制地区农田土壤杂草种子库的影响, 在江苏常州金坛区进行了固定施肥试验。经过连续4年试验处理后, 对不同施肥处理下农田土壤杂草种子库杂草种子种类及密度进行了调查, 并对杂草种子多样性、数量、分布与施肥措施的关系进行了分析。结果表明, 与不施肥相比, 施肥有减少稻麦轮作田土壤杂草种子库杂草种子种类数、杂草种子群落均匀度指数和物种多样性指数的趋势, 并使稻麦轮作田土壤杂草种子库杂草种子总密度明显降低。施肥明显提高了土壤杂草种子库菵草(Beckmannia syzigachne)、日本看麦娘(Alopecurus japonicus)、看麦娘(A. aequalis)种子的密度, 施用猪粪堆肥配施化肥处理提高程度更为显著; 秸秆还田配施化肥、秸秆还田配施有机肥化肥、有机无机复合肥施用处理有减少菵草、日本看麦娘、看麦娘杂草种子密度的趋势。施肥明显降低了土壤杂草种子库阔叶杂草种子密度; 施用有机肥有增加土壤杂草种子库水苦荬(Veronica undulata)、蛇床(Cnidium monnieri)种子密度的趋势; 施用猪粪堆肥有增加土壤杂草种子库鸭舌草(Monochoria vaginalis)种子密度的趋势。因此, 不同种类杂草对不同肥料存在偏好性差异, 不同施肥方式造成了土壤杂草种子库优势物种组成的差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号