首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】灵活操控靶基因的表达水平对于研究基因的功能十分重要。Gal4/UAS系统已被广泛应用于调控基因表达,可研究果蝇Drosophila等模式生物复杂的生物学问题。受采用载体的特性及插入位点的影响,Gal4或UAS转基因品系在构建好之后,其调控靶基因的能力基本是确定的。本研究旨在在现有Gal4/UAS系统的基础上,开发一种新的策略,实现在果蝇翅芽中灵活操控wingless(wg)基因的表达水平。【方法】用遗传学手段将黑腹果蝇Drosophila melanogaster品系的UAS-wg和UAS-wg-RNAi转基因重组到同一黑腹果蝇品系中。将该重组黑腹果蝇品系与dpp-Gal4黑腹果蝇品系杂交,同时驱动UAS-wg和UAS-wg-RNAi在果蝇幼虫翅芽中共表达。杂交子代幼虫分别放置在不同的温度(18, 25和30℃)下培养。将幼虫翅芽解剖并进行免疫组化染色,测量染色的荧光强度,分析翅芽中wg的表达水平。【结果】在低温(18℃)下,UAS-wg在基因表达调控中起主要作用,wg表现为超表达,但其超表达的效率可被UAS-wg-RNAi有效地削弱。相反,在高温(30℃)下,UAS-wg-RNAi起主导作用,wg的表达受到抑制。并且通过转换温度,可实现wg在翅芽发育的不同阶段在超表达和抑制之间相互转化,从而灵活地操控wg基因在翅芽中的表达水平。【结论】该方法可以灵活操控果蝇翅芽中wg基因的表达水平,对于调控转基因的表达有重要的意义。  相似文献   

2.
【目的】Gal80~(ts)与Gal4组合驱动UAS转基因表达是黑腹果蝇Drosophila melanogaster研究中常用的转基因过表达遗传学工具,通过温度控制实现对UAS转基因表达的灵活开关。Gal80~(ts)是一种温度敏感型蛋白,低温下(18℃)与Gal4蛋白结合并抑制其转录活力,高温下(29℃)解除对Gal4的抑制,从而允许Gal4结合UAS位点,启动UAS转基因的表达。但是从18~29℃的开关只能强烈过表达UAS转基因,而不能灵活调控转基因的表达水平。本实验系统研究一系列温度下转基因的表达水平,从而实现该体系对转基因的表达水平的灵活控制。【方法】以果蝇翅芽这一常用器官组织为研究模型,以2种Gal4品系(dpp-Gal4和en-Gal4,分别由decapentaplgic和engrailed基因的启动子驱动)分别与tub-Gal80~(ts)(微管蛋白基因tubulin启动子驱动)基因重组后,再分别与UAS-wg(wingless)转基因品系杂交;在一系列温度(18,25,27.5,28,28.5和30℃)下进行子代幼虫培养,通过免疫组化染色揭示并量化分析转基因wg在3龄幼虫翅芽上的表达水平。【结果】18~25℃培养条件下,Gal80~(ts)与Gal4组合系统中的UAS转基因不能表达;30℃时培养,转基因强烈地过表达;在25~30℃区间内,随着温度升高,转基因表达水平逐渐上升。【结论】在25~30℃之间的温度调控可以实现对Gal80~(ts)与Gal4组合系统中的UAS转基因表达水平的调控。本研究结果对调控转基因表达程度有重要价值。  相似文献   

3.
Ten-a is one of the two Drosophila proteins that belong to the Ten M protein family. This protein is a type Ⅱ transmembrane protein and is expressed mainly in the embryonic CNS, in the larval eye imaginal disc and in the compound eye of the pupa. Here, we investigate the role of ten-α during development of the compound eye by using the Gal4/ UAS system to induce ten-α overexpression in the developing eye. We found that overexpression of ten-α can perturb eye development during all stages examined. In an early stage, overexpression of ten-α in eye primordial cells caused small and rough eyes and interfered with photoreceptor cell recruitment, resulting in some ommatidia having fewer or extra photoreceptor cells. Conversely, ten-α overexpression daring ommatidial formation caused severe eye defects due to absence of many cellular components. Interestingly, overexpression of ten-α in the late stage developing ommatidial cluster affected the number of pigment cells, caused cone cells proliferation in many ommatidia, and caused some photoreceptor cell defects. These results suggest that ten-α may be a novel gene required for normal eye morphogenesis.  相似文献   

4.
《Developmental cell》2021,56(24):3393-3404.e7
  1. Download : Download high-res image (148KB)
  2. Download : Download full-size image
  相似文献   

5.
Paul N. Adler 《Fly》2017,11(3):194-199
The exoskeleton of insects and other arthropods is a very versatile material that is characterized by a complex multilayer structure. In Sobala and Adler (2016) we analyzed the process of wing cuticle deposition by RNAseq and electron microscopy. In this extra view we discuss the unique aspects of the envelope the first and most outermost layer and the gene expression program seen at the end of cuticle deposition. We discussed the role of undulae in the deposition of cuticle and how the hydrophobicity of wing cuticle arises.  相似文献   

6.
In Drosophila, the Gal4‐UAS system is used to drive ectopic gene expression in a tissue‐specific manner. In this system, transgenic flies expressing tissue specific Gal4 are crossed to a line in which the gene to be expressed is under the control of a Gal4‐responsive UAS sequence. The resulting progeny express the gene of interest in the pattern of the particular Gal4 line. Since a given UAS‐transgene can be driven by any Gal4 line, this system is predominantly limited by available Gal4 lines. Here we report the characterization of a novel line, DE‐Gal4, which in the eye is expressed in the dorsal compartment for the majority of development. Furthermore, we use functional tests to show that the DE‐Gal4 line is a useful tool with which to manipulate gene expression in half of the developing eye. genesis 48:3–7, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Almost every cell in the Drosophila pupal wing forms a single, distally pointing cuticular hair. The function of the frizzled (fz) gene is essential for the elaboration of the normal wing hair pattern. In the absence of fz function hairs develop, but they display an abnormal polarity. We have examined the developmental expression of the fi gene at the RNA level via in situ hybridization and at the protein level via Western blotting. We have found that fz is expressed in all regions of the epidermis before, during, and after the fz cold sensitive period. We have also found that fz function is not required for normal fi expression. We have further found that mutations in several other tissue polarity genes do not noticeably alter the expression or the modification state of the Fz protein. © 1994 Wiley-Liss, Inc.  相似文献   

8.
The analysis of mutants is an indispensable approach towards characterizing gene function. Combining several tools of Drosophila genetics, we designed a new strategy for a mutagenesis screen which is fast, easy-to-apply, and cheap. The combination of a cell-specific Gal4 line with an upstream activating sequence-green fluorescent protein (UAS-GFP) allows the in vivo detection of the cells or tissues of interest without the need for fixation and staining. To further simplify and accelerate the screening procedure, we generated recombinant flies that carry the Gal80 transgene in balancer chromosomes. Gal80 inactivates Gal4; and thus prevents GFP-expression during embryonic and postembryonic development in all individuals carrying the balancer chromosomes. This allows for an easy distinction in vivo between heterozygous and homozygous mutants, the latter being the only ones expressing GFP. Since most of the fly strains and balancer chromosomes can be substituted, this method is suitable for nearly any mutagenesis screen that does not have major restrictions.  相似文献   

9.
10.
Genetic mosaic approach is commonly used in the Drosophila eye by completely abolishing or misexpressing a gene within a subset of cells to unravel its role during development. Classical genetic mosaic approach involves random clone generation in all developing fields. Consequently, a large sample size needs to be screened to generate and analyze clones in specific domains of the developing eye. To address domain specific functions of genes during axial patterning, we have developed a system for generating mosaic clones by combining Gal4/UAS and flippase (FLP)/FRT system which will allow generation of loss‐of‐function as well as gain‐of‐function clones on the dorsal and ventral eye margins. We used the bifid‐Gal4 driver to drive expression of UAS‐FLP. This reagent can have multiple applications in (i) studying spatio‐temporal function of a gene during dorso‐ventral (DV) axis specification in the eye, (ii) analyzing genetic epistasis of genes involved in DV patterning, and (iii) conducting genome wide screens in a domain specific manner. genesis 51:68–74, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Behavior is a manifestation of temporally and spatially defined neuronal activities. To understand how behavior is controlled by the nervous system, it is important to identify the neuronal substrates responsible for these activities, and to elucidate how they are integrated into a functional circuit. I introduce a novel and general method to conditionally perturb anatomically defined neurons in intact Drosophila. In this method, a temperature‐sensitive allele of shibire (shits1) is overexpressed in neuronal subsets using the GAL4/UAS system. Because the shi gene product is essential for synaptic vesicle recycling, and shits1 is semidominant, a simple temperature shift should lead to fast and reversible effects on synaptic transmission of shits1 expressing neurons. When shits1 expression was directed to cholinergic neurons, adult flies showed a dramatic response to the restrictive temperature, becoming motionless within 2 min at 30°C. This temperature‐induced paralysis was reversible. After being shifted back to the permissive temperature, they readily regained their activity and started to walk in 1 min. When shits1 was expressed in photoreceptor cells, adults and larvae exhibited temperature‐dependent blindness. These observations show that the GAL4/UAS system can be used to express shits1 in a specific subset of neurons to cause temperature‐dependent changes in behavior. Because this method allows perturbation of the neuronal activities rapidly and reversibly in a spatially and temporally restricted manner, it will be useful to study the functional significance of particular neuronal subsets in the behavior of intact animals. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 81–92, 2001  相似文献   

12.
TTP在哺乳动物许多关键基因表达的转录后水平上起调控作用,Tis11是TTP蛋白在果蝇中的同源物.目前还没有现成的可用于研究Tis11功能的基因敲除或敲低的果蝇.为了获得肌动蛋白启动子或者热激蛋白启动子驱动表达Tis11 mRNA干扰序列的具有较高干扰效率的Tis11基因干扰果蝇,将肌动蛋白启动子或者热激启动子驱动表达的GAL4果蝇品系与融合有Tis11 mRNA干扰序列的UAS品系杂交,收集同时带有GAL4基因和UAS序列的子一代果蝇.提取所收集果蝇的总RNA,将其中的mRNA逆转录成cDNA,并设计检测Tis11基因的特异性引物,然后通过Real-time PCR检测Tis11 mRNA的表达情况.结果显示所收集的能表达Tis11基因干扰序列的子一代果蝇与不能表达Tis11基因干扰序列的对照果蝇相比,其体内Tis11 mRNA的表达水平下降明显.收集的果蝇其体内所表达的干扰序列对Tis11 mRNA干扰效果显著,我们成功获得了Tis11基因的RNA干扰果蝇.  相似文献   

13.
The imaginal wing disc of flies gives rise to the adult wing blade and dorsal thorax (notum). A great deal has been learned in recent years about the process of neurogenesis in this disc; a number of genes that play crucial roles in the formation of sensory mother cells and in the differentiation of the sensory organs have been identified and their roles defined. Given this extensive background of developmental genetics, it has seemed profitable to summarize what is known about the end-products of neural development, the adult sensory organs. Discussed are their physiological function and role in behavior, the pathways followed by their axons in the CNS, and both genes and epigenetic processes that might play some role in the later stages of neural development and in adult function. The highly individual characteristics of certain of the sensory organs is emphasized, both in the context of their adult roles and as a challenge for future studies in developmental genetics. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
欧俊  郑思春  冯启理  刘琳 《昆虫学报》2013,56(8):917-924
翅原基发育分化与昆虫的个体发育紧密联系, 对昆虫翅发育的研究有助于阐述昆虫的发育过程。另外, 翅的形成是一些农林害虫泛滥的主要原因之一, 研究翅发育分化有助于我们从翅发育的角度控制农林害虫。目前, 翅发育分化在果蝇Drosophila中研究已较为深入详细。果蝇翅发育分化主要包括4个阶段: 翅原基(wing disc)的确定, 前-后(antero-posterior, A-P)和背-腹(dorso-ventral, D-V)组织中心(organizing center)的建立, 翅区(wing region)的确定, 以及翅区的进一步分化。具有homeobox序列的基因(homeobox 基因)如Engrailed (En)、 Apterous (Ap)和Ultrabithorax (Ubx), 分泌蛋白如Wnt家族成员Wingless (Wg)及TGF-β超家族成员Decapentaplegic (Dpp)和Hedgehog (Hh), 以及翅原基特有的核蛋白编码基因Vestigial (Vg), 共同调控了翅原基的正常发育分化。本文综述了果蝇翅原基发育分化的过程及分子机理方面的研究发现, 为翅原基的研究提供了参考。  相似文献   

15.
Targeted inactivation of neurons by expression of toxic gene products is a useful tool to assign behavioral functions to specific neurons or brain structures. Of a variety of toxic gene products tested, tetanus neurotoxin light chain (TNT) has the least severe side effects and can completely block chemical synapses. By using the GAL4 system to drive TNT expression in a subset of chemo‐ and mechanosensory neurons, we detected walking and flight defects consistent with blocking of relevant sensory information. We also found, for the first time, an olfactory behavioral phenotype associated with blocking of a specific subset of antennal chemoreceptors. Similar behavioral experiments with GAL4 lines expressing in different subsets of antennal chemoreceptors should contribute to an understanding of olfactory coding in Drosophila. To increase the utility of the GAL4 system for such purposes, we have designed an inducible system that allows us to circumvent lethality caused by TNT expression during early development. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 221–233, 2002; DOI 10.1002/neu.10029  相似文献   

16.
The Gal4/ UAS binary method is powerful for gene and neural circuitry manipulation in Drosophila. For most neurobiological studies, however, Gal4 expression is rarely tissue-specific enough to allow for precise correlation of the circuit with behavioral readouts. To overcome this major hurdle, we recently developed the FINGR method to achieve a more restrictive Gal4 expression in the tissue of interest. The FINGR method has three components: 1) the traditional Gal4/UAS system; 2) a set of FLP/FRT-mediated Gal80 converting tools; and 3) enhancer-trap FLP (ET-FLP). Gal4 is used to define the primary neural circuitry of interest. Paring the Gal4 with a UAS-effector, such as UAS-MJD78Q or UAS-Shits, regulates the neuronal activity, which is in turn manifested by alterations in the fly behavior. With an additional UAS-reporter such as UAS-GFP, the neural circuit involved in the specific behavior can be simultaneously mapped for morphological analysis. For Gal4 lines with broad expression, Gal4 expression can be restricted by using two complementary Gal80-converting tools: tubP>Gal80> (''flip out'') and tubP>stop>Gal80 (''flip in''). Finally, investigators can turn Gal80 on or off, respectively, with the help of tissue-specific ET-FLP. In the flip-in mode, Gal80 will repress Gal4 expression wherever Gal4 and ET-FLP intersect. In the flip-out mode, Gal80 will relieve Gal4 repression in cells in which Gal4 and FLP overlap. Both approaches enable the restriction of the number of cells in the Gal4-defined circuitry, but in an inverse pattern. The FINGR method is compatible with the vast collection of Gal4 lines in the fly community and highly versatile for traditional clonal analysis and for neural circuit mapping. In this protocol, we demonstrate the mapping of FLP expression patterns in select ET-FLPx2 lines and the effectiveness of the FINGR method in photoreceptor cells. The principle of the FINGR method should also be applicable to other genetic model organisms in which Gal4/UAS, Gal80, and FLP/FRT are used.  相似文献   

17.
18.
19.
To regenerate, damaged tissue must heal the wound, regrow to the proper size, replace the correct cell types, and return to the normal gene-expression program. However, the mechanisms that temporally and spatially control the activation or repression of important genes during regeneration are not fully understood. To determine the role that chromatin modifiers play in regulating gene expression after tissue damage, we induced ablation in Drosophila melanogaster imaginal wing discs, and screened for chromatin regulators that are required for epithelial tissue regeneration. Here, we show that many of these genes are indeed important for promoting or constraining regeneration. Specifically, the two SWI/SNF chromatin-remodeling complexes play distinct roles in regulating different aspects of regeneration. The PBAP complex regulates regenerative growth and developmental timing, and is required for the expression of JNK signaling targets and the growth promoter Myc. By contrast, the BAP complex ensures correct patterning and cell fate by stabilizing the expression of the posterior gene engrailed. Thus, both SWI/SNF complexes are essential for proper gene expression during tissue regeneration, but they play distinct roles in regulating growth and cell fate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号