首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Natural history museums are vastly underutilized as a source of material for DNA analysis because of perceptions about the limitations of DNA degradation in older specimens. Despite very few exceptions, most DNA barcoding projects, which aim to obtain sequence data from all species, generally use specimens collected specifically for that purpose, instead of the wealth of identified material in museums, constrained by the lack of suitable PCR methods. Any techniques that extend the utility of museum specimens for DNA analysis therefore are highly valuable. This study first tested the effects of specimen age and PCR amplicon size on PCR success rates in pinned insect specimens, then developed a PCR primer set and amplification strategy allowing greatly increased utilization of older museum specimens for DNA barcoding. PCR success rates compare favourably with the few published studies utilizing similar aged specimens, and this new strategy has the advantage of being easily automated for high‐throughput laboratory workflows. The strategy uses hemi‐nested, degenerate, M13‐tailed PCR primers to amplify two overlapping amplicons, using two PCRs per amplicon (i.e. four PCRs per DNA sample). Initial PCR products are reamplified using an internal primer and a M13 primer. Together the two PCR amplicons yield 559 bp of the COI gene from Coleoptera, Lepidoptera, Diptera, Hemiptera, Odonata and presumably also other insects. BARCODE standard‐compliant data were recovered from 67% (56 of 84) of specimens up to 25 years old, and 51% (102 of 197) of specimens up to 55 years old. Given the time, cost and specialist expertise required for fieldwork and identification, ‘collecting in collections’ is a viable alternative allowing researchers to capitalize on the knowledge captured by curation work in decades past.  相似文献   

3.
With read lengths of currently up to 2 × 300 bp, high throughput and low sequencing costs Illumina''s MiSeq is becoming one of the most utilized sequencing platforms worldwide. The platform is manageable and affordable even for smaller labs. This enables quick turnaround on a broad range of applications such as targeted gene sequencing, metagenomics, small genome sequencing and clinical molecular diagnostics. However, Illumina error profiles are still poorly understood and programs are therefore not designed for the idiosyncrasies of Illumina data. A better knowledge of the error patterns is essential for sequence analysis and vital if we are to draw valid conclusions. Studying true genetic variation in a population sample is fundamental for understanding diseases, evolution and origin. We conducted a large study on the error patterns for the MiSeq based on 16S rRNA amplicon sequencing data. We tested state-of-the-art library preparation methods for amplicon sequencing and showed that the library preparation method and the choice of primers are the most significant sources of bias and cause distinct error patterns. Furthermore we tested the efficiency of various error correction strategies and identified quality trimming (Sickle) combined with error correction (BayesHammer) followed by read overlapping (PANDAseq) as the most successful approach, reducing substitution error rates on average by 93%.  相似文献   

4.
5.
Despite recent advances in high‐throughput sequencing, difficulties are often encountered when developing microsatellites for species with large and complex genomes. This probably reflects the close association in many species of microsatellites with cryptic repetitive elements. We therefore developed a novel approach for isolating polymorphic microsatellites from the club‐legged grasshopper (Gomphocerus sibiricus), an emerging quantitative genetic and behavioral model system. Whole genome shotgun Illumina MiSeq sequencing was used to generate over three million 300 bp paired‐end reads, of which 67.75% were grouped into 40,548 clusters within RepeatExplorer. Annotations of the top 468 clusters, which represent 60.5% of the reads, revealed homology to satellite DNA and a variety of transposable elements. Evaluating 96 primer pairs in eight wild‐caught individuals, we found that primers mined from singleton reads were six times more likely to amplify a single polymorphic microsatellite locus than primers mined from clusters. Our study provides experimental evidence in support of the notion that microsatellites associated with repetitive elements are less likely to successfully amplify. It also reveals how advances in high‐throughput sequencing and graph‐based repetitive DNA analysis can be leveraged to isolate polymorphic microsatellites from complex genomes.  相似文献   

6.
Next‐generation sequencing (NGS) technology has extraordinarily enhanced the scope of research in the life sciences. To broaden the application of NGS to systems that were previously difficult to study, we present protocols for processing faecal and swab samples into amplicon libraries amenable to Illumina sequencing. We developed and tested a novel metagenomic DNA extraction approach using solid phase reversible immobilization (SPRI) beads on Western Bluebird (Sialia mexicana) samples stored in RNAlater. Compared with the MO BIO PowerSoil Kit, the current standard for the Human and Earth Microbiome Projects, the SPRI‐based method produced comparable 16S rRNA gene PCR amplification from faecal extractions but significantly greater DNA quality, quantity and PCR success for both cloacal and oral swab samples. We furthermore modified published protocols for preparing highly multiplexed Illumina libraries with minimal sample loss and without post‐adapter ligation amplification. Our library preparation protocol was successfully validated on three sets of heterogeneous amplicons (16S rRNA gene amplicons from SPRI and PowerSoil extractions as well as control arthropod COI gene amplicons) that were sequenced across three independent, 250‐bp, paired‐end runs on Illumina's MiSeq platform. Sequence analyses revealed largely equivalent results from the SPRI and PowerSoil extractions. Our comprehensive strategies focus on maximizing efficiency and minimizing costs. In addition to increasing the feasibility of using minimally invasive sampling and NGS capabilities in avian research, our methods are notably not avian‐specific and thus applicable to many research programmes that involve DNA extraction and amplicon sequencing.  相似文献   

7.
Whole‐genome‐shotgun (WGS) sequencing of total genomic DNA was used to recover ~1 Mbp of novel mitochondrial (mtDNA) sequence from Pinus sylvestris (L.) and three members of the closely related Pinus mugo species complex. DNA was extracted from megagametophyte tissue from six mother trees from locations across Europe, and 100‐bp paired‐end sequencing was performed on the Illumina HiSeq platform. Candidate mtDNA sequences were identified by their size and coverage characteristics, and by comparison with published plant mitochondrial genomes. Novel variants were identified, and primers targeting these loci were trialled on a set of 28 individuals from across Europe. In total, 31 SNP loci were successfully resequenced, characterizing 15 unique haplotypes. This approach offers a cost‐effective means of developing marker resources for mitochondrial genomes in other plant species where reference sequences are unavailable.  相似文献   

8.
High‐throughput sequencing has been proposed as a method to genotype microsatellites and overcome the four main technical drawbacks of capillary electrophoresis: amplification artifacts, imprecise sizing, length homoplasy, and limited multiplex capability. The objective of this project was to test a high‐throughput amplicon sequencing approach to fragment analysis of short tandem repeats and characterize its advantages and disadvantages against traditional capillary electrophoresis. We amplified and sequenced 12 muskrat microsatellite loci from 180 muskrat specimens and analyzed the sequencing data for precision of allele calling, propensity for amplification or sequencing artifacts, and for evidence of length homoplasy. Of the 294 total alleles, we detected by sequencing, only 164 alleles would have been detected by capillary electrophoresis as the remaining 130 alleles (44%) would have been hidden by length homoplasy. The ability to detect a greater number of unique alleles resulted in the ability to resolve greater population genetic structure. The primary advantages of fragment analysis by sequencing are the ability to precisely size fragments, resolve length homoplasy, multiplex many individuals and many loci into a single high‐throughput run, and compare data across projects and across laboratories (present and future) with minimal technical calibration. A significant disadvantage of fragment analysis by sequencing is that the method is only practical and cost‐effective when performed on batches of several hundred samples with multiple loci. Future work is needed to optimize throughput while minimizing costs and to update existing microsatellite allele calling and analysis programs to accommodate sequence‐aware microsatellite data.  相似文献   

9.
High-throughput sequencing of the taxonomically informative 16S rRNA gene provides a powerful approach for exploring microbial diversity. Here we compare the performances of two common “benchtop” sequencing platforms, Illumina MiSeq and Ion Torrent Personal Genome Machine (PGM), for bacterial community profiling by 16S rRNA (V1-V2) amplicon sequencing. We benchmarked performance by using a 20-organism mock bacterial community and a collection of primary human specimens. We observed comparatively higher error rates with the Ion Torrent platform and report a pattern of premature sequence truncation specific to semiconductor sequencing. Read truncation was dependent on both the directionality of sequencing and the target species, resulting in organism-specific biases in community profiles. We found that these sequencing artifacts could be minimized by using bidirectional amplicon sequencing and an optimized flow order on the Ion Torrent platform. Results of bacterial community profiling performed on the mock community and a collection of 18 human-derived microbiological specimens were generally in good agreement for both platforms; however, in some cases, results differed significantly. Disparities could be attributed to the failure to generate full-length reads for particular organisms on the Ion Torrent platform, organism-dependent differences in sequence error rates affecting classification of certain species, or some combination of these factors. This study demonstrates the potential for differential bias in bacterial community profiles resulting from the choice of sequencing platform alone.  相似文献   

10.
With their direct link to individual fitness, genes of the major histocompatibility complex (MHC) are a popular system to study the evolution of adaptive genetic diversity. However, owing to the highly dynamic evolution of the MHC region, the isolation, characterization and genotyping of MHC genes remain a major challenge. While high‐throughput sequencing technologies now provide unprecedented resolution of the high allelic diversity observed at the MHC, in many species, it remains unclear (i) how alleles are distributed among MHC loci, (ii) whether MHC loci are linked or segregate independently and (iii) how much copy number variation (CNV) can be observed for MHC genes in natural populations. Here, we show that the study of allele segregation patterns within families can provide significant insights in this context. We sequenced two MHC class I (MHC‐I) loci in 1267 European barn owls (Tyto alba), including 590 offspring from 130 families using Illumina MiSeq technology. Coupled with a high per‐individual sequencing coverage (~3000×), the study of allele segregation patterns within families provided information on three aspects of the architecture of MHC‐I variation in barn owls: (i) extensive sharing of alleles among loci, (ii) strong linkage of MHC‐I loci indicating tandem architecture and (iii) the presence of CNV in the barn owl MHC‐I. We conclude that the additional information that can be gained from high‐coverage amplicon sequencing by investigating allele segregation patterns in families not only helps improving the accuracy of MHC genotyping, but also contributes towards enhanced analyses in the context of MHC evolutionary ecology.  相似文献   

11.
12.
Natural history collections play a crucial role in biodiversity research, and museum specimens are increasingly being incorporated into modern genetics‐based studies. Sequence capture methods have proven incredibly useful for phylogenomics, providing the additional ability to sequence historical museum specimens with highly degraded DNA, which until recently have been deemed less valuable for genetic work. The successful sequencing of ultraconserved elements (UCEs) from historical museum specimens has been demonstrated on multiple tissue types including dried bird skins, formalin‐fixed squamates and pinned insects. However, no study has thoroughly demonstrated this approach for historical ethanol‐preserved museum specimens. Alongside sequencing of “fresh” specimens preserved in >95% ethanol and stored at ?80°C, we used extraction techniques specifically designed for degraded DNA coupled with sequence capture protocols to sequence UCEs from historical museum specimens preserved in 70%–80% ethanol and stored at room temperature, the standard for such ethanol‐preserved museum collections. Across 35 fresh and 15 historical museum samples of the arachnid order Opiliones, an average of 345 UCE loci were included in phylogenomic matrices, with museum samples ranging from six to 495 loci. We successfully demonstrate the inclusion of historical ethanol‐preserved museum specimens in modern sequence capture phylogenomic studies, show a high frequency of variant bases at the species and population levels, and from off‐target reads successfully recover multiple loci traditionally sequenced in multilocus studies including mitochondrial loci and nuclear rRNA loci. The methods detailed in this study will allow researchers to potentially acquire genetic data from millions of ethanol‐preserved museum specimens held in collections worldwide.  相似文献   

13.
Characterization of highly duplicated genes, such as genes of the major histocompatibility complex (MHC), where multiple loci often co‐amplify, has until recently been hindered by insufficient read depths per amplicon. Here, we used ultra‐deep Illumina sequencing to resolve genotypes at exon 3 of MHC class I genes in the sedge warbler (Acrocephalus schoenobaenus). We sequenced 24 individuals in two replicates and used this data, as well as a simulated data set, to test the effect of amplicon coverage (range: 500–20 000 reads per amplicon) on the repeatability of genotyping using four different genotyping approaches. A third replicate employed unique barcoding to assess the extent of tag jumping, that is swapping of individual tag identifiers, which may confound genotyping. The reliability of MHC genotyping increased with coverage and approached or exceeded 90% within‐method repeatability of allele calling at coverages of >5000 reads per amplicon. We found generally high agreement between genotyping methods, especially at high coverages. High reliability of the tested genotyping approaches was further supported by our analysis of the simulated data set, although the genotyping approach relying primarily on replication of variants in independent amplicons proved sensitive to repeatable errors. According to the most repeatable genotyping method, the number of co‐amplifying variants per individual ranged from 19 to 42. Tag jumping was detectable, but at such low frequencies that it did not affect the reliability of genotyping. We thus demonstrate that gene families with many co‐amplifying genes can be reliably genotyped using HTS, provided that there is sufficient per amplicon coverage.  相似文献   

14.
Microsatellite markers are still the marker of choice for many research questions in the field of forest genetics. However, the number of available markers is often low for species that have not been studied intensively like the tree of heaven (Ailanthus altissima). During the last decade, next-generation sequencing (NGS) has offered advanced techniques for efficiently identifying microsatellite markers and accurately genotyping samples. Here, we identify new microsatellite markers for the tree of heaven by applying an NGS-based method using the Illumina MiSeq platform. NGS technology was proved to be an effective method for fast and cost-efficient identification of microsatellite markers by implementing a genotyping-by-sequencing approach based on Illumina amplicon sequencing (SSR-GBS). We screened three populations from Eastern Austria for genetic variation at 19 newly identified microsatellite loci. We tested two different genotyping approaches: (1) considering only allele lengths (forming a so-called “allele length dataset”), (2) taking also single nucleotide polymorphisms (SNPs) within the amplified fragments into account (forming a so-called “SNP dataset”). The results revealed higher values for all genetic diversity parameters, as well as a better resolution of genetic assignment, when the latter approach was followed. Thus, by taking advantage of sequence information which is provided by SSR-GBS, one may achieve considerable gains in performance using the same marker set. The developed markers provide a cost-efficient tool for genotyping populations of tree of heaven and the approach presented here promises to be of high value for medium throughput genotyping applications in non-model forest tree species. We will use this method to widen the perspectives for further population genetic investigations of the tree of heaven.  相似文献   

15.
Different second‐generation sequencing technologies may have taxon‐specific biases when DNA metabarcoding prey in predator faeces. Our major objective was to examine differences in prey recovery from bat guano across two different sequencing workflows using the same faecal DNA extracts. We compared results between the Ion Torrent PGM and the Illumina MiSeq with similar library preparations and the same analysis pipeline. We focus on repeatability and provide an R Notebook in an effort towards transparency for future methodological improvements. Full documentation of each step enhances the accessibility of our analysis pipeline. We tagged DNA from insectivorous bat faecal samples, targeted the arthropod cytochrome c oxidase I minibarcode region and sequenced the product on both second‐generation sequencing platforms. We developed an analysis pipeline with a high operational taxonomic unit (OTU) clustering threshold (i.e., ≥98.5%) followed by copy number filtering to avoid merging rare but genetically similar prey into the same OTUs. With this workflow, we detected 297 unique prey taxa, of which 74% were identified at the species level. Of these, 104 (35%) prey OTUs were detected by both platforms, 176 (59%) OTUs were detected by the Illumina MiSeq system only, and 17 (6%) OTUs were detected using the Ion Torrent system only. Costs were similar between platforms but the Illumina MiSeq recovered six times more reads and four additional insect orders than did Ion Torrent. The considerations we outline are particularly important for long‐term ecological monitoring; a more standardized approach will facilitate comparisons between studies and allow faster recognition of changes within ecological communities.  相似文献   

16.
Anopheles is a diverse genus of mosquitoes comprising over 500 described species, including all known human malaria vectors. While a limited number of key vector species have been studied in detail, the goal of malaria elimination calls for surveillance of all potential vector species. Here, we develop a multilocus amplicon sequencing approach that targets 62 highly variable loci in the Anopheles genome and two conserved loci in the Plasmodium mitochondrion, simultaneously revealing both the mosquito species and whether that mosquito carries malaria parasites. We also develop a cheap, nondestructive, and high-throughput DNA extraction workflow that provides template DNA from single mosquitoes for the multiplex PCR, which means specimens producing unexpected results can be returned to for morphological examination. Over 1000 individual mosquitoes can be sequenced in a single MiSeq run, and we demonstrate the panel’s power to assign species identity using sequencing data for 40 species from Africa, Southeast Asia, and South America. We also show that the approach can be used to resolve geographic population structure within An. gambiae and An. coluzzii populations, as the population structure determined based on these 62 loci from over 1000 mosquitoes closely mirrors that revealed through whole genome sequencing. The end-to-end approach is quick, inexpensive, robust, and accurate, which makes it a promising technique for very large-scale mosquito genetic surveillance and vector control.  相似文献   

17.
We present the development of a genomic library using RADseq (restriction site associated DNA sequencing) protocol for marker discovery that can be applied on evolutionary studies of the sugarcane borer Diatraea saccharalis, an important South American insect pest. A RADtag protocol combined with Illumina paired‐end sequencing allowed de novo discovery of 12 811 SNPs and a high‐quality assembly of 122.8M paired‐end reads from six individuals, representing 40 Gb of sequencing data. Approximately 1.7 Mb of the sugarcane borer genome distributed over 5289 minicontigs were obtained upon assembly of second reads from first reads RADtag loci where at least one SNP was discovered and genotyped. Minicontig lengths ranged from 200 to 611 bp and were used for functional annotation and microsatellite discovery. These markers will be used in future studies to understand gene flow and adaptation to host plants and control tactics.  相似文献   

18.
DNA sequencing continues to decrease in cost with the Illumina HiSeq2000 generating up to 600 Gb of paired-end 100 base reads in a ten-day run. Here we present a protocol for community amplicon sequencing on the HiSeq2000 and MiSeq Illumina platforms, and apply that protocol to sequence 24 microbial communities from host-associated and free-living environments. A critical question as more sequencing platforms become available is whether biological conclusions derived on one platform are consistent with what would be derived on a different platform. We show that the protocol developed for these instruments successfully recaptures known biological results, and additionally that biological conclusions are consistent across sequencing platforms (the HiSeq2000 versus the MiSeq) and across the sequenced regions of amplicons.  相似文献   

19.
High‐throughput sequencing platforms are continuing to increase resulting read lengths, which is allowing for a deeper and more accurate depiction of environmental microbial diversity. With the nascent Reagent Kit v3, Illumina MiSeq now has the ability to sequence the eukaryotic hyper‐variable V4 region of the SSU‐rDNA locus with paired‐end reads. Using DNA collected from soils with analyses of strictly‐ and nearly identical amplicons, here we ask how the new Illumina MiSeq data compares with what we can obtain with Roche/454 GS FLX with regard to quantity and quality, presence and absence, and abundance perspectives. We show that there is an easy qualitative transition from the Roche/454 to the Illumina MiSeq platforms. The ease of this transition is more nuanced quantitatively for low‐abundant amplicons, although estimates of abundances are known to also vary within platforms.  相似文献   

20.
The application of high‐throughput sequencing (HTS) for metabarcoding of mixed samples offers new opportunities in conservation biology. Recently, the successful detection of prey DNA from the guts of leeches has raised the possibility that these, and other blood‐feeding invertebrates, might serve as useful samplers of mammals. Yet little is known about whether sympatric leech species differ in their feeding preferences, and whether this has a bearing on their relative suitability for monitoring local mammalian diversity. To address these questions, we collected spatially matched samples of two congeneric leech species Haemadipsa picta and Haemadipsa sumatrana from lowland rainforest in Borneo. For each species, we pooled ~500 leeches into batches of 10 individuals, performed PCR to target a section of the mammalian 16S rRNA locus and undertook sequencing of amplicon libraries using an Illumina MiSeq. In total, we identified sequences from 14 mammalian genera, spanning nine families and five orders. We found greater numbers of detections, and higher diversity of OTUs, in H. picta compared with H. sumatrana, with rodents only present in the former leech species. However, comparison of samples from across the landscape revealed no significant difference in mammal community composition between the leech species. We therefore suggest that H. picta is the more suitable iDNA sampler in this degraded Bornean forest. We conclude that the choice of invertebrate sampler can influence the detectability of different mammal groups and that this should be accounted for when designing iDNA studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号