首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
  • The impact of global warming on seed dormancy loss and germination was investigated in Alliaria petiolata (garlic mustard), a common woodland/hedgerow plant in Eurasia, considered invasive in North America. Increased temperature may have serious implications, since seeds of this species germinate and emerge at low temperatures early in spring to establish and grow before canopy development of competing species.
  • Dormancy was evaluated in seeds buried in field soils. Seedling emergence was also investigated in the field, and in a thermogradient tunnel under global warming scenarios representing predicted UK air temperatures through to 2080.
  • Dormancy was simple, and its relief required the accumulation of low temperature chilling time. Under a global warming scenario, dormancy relief and seedling emergence declined and seed mortality increased as soil temperature increased along a thermal gradient. Seedling emergence advanced with soil temperature, peaking 8 days earlier under 2080 conditions.
  • The results indicate that as mean temperature increases due to global warming, the chilling requirement for dormancy relief may not be fully satisfied, but seedling emergence will continue from low dormancy seeds in the population. Adaptation resulting from selection of this low dormancy proportion is likely to reduce the overall population chilling requirement. Seedling emergence is also likely to keep pace with the advancement of biological spring, enabling A. petiolata to maintain its strategy of establishment before the woodland canopy closes. However, this potential for adaptation may be countered by increased seed mortality in the seed bank as soils warm.
  相似文献   

2.
  • Plants are known to respond to warming temperatures. Few studies, however, have included the temperature experienced by the parent plant in the experimental design, in spite of the importance of this factor for population dynamics.
  • We investigated the phenological and growth responses of seedlings of two key temperate tree species (Fagus sylvatica and Quercus robur) to spatiotemporal temperature variation during the reproductive period (parental generation) and experimental warming of the offspring. To this end, we sampled oak and beech seedlings of different ages (1–5 years) from isolated mother trees and planted the seedlings in a common garden.
  • Warming of the seedlings advanced bud burst in both species. In oak seedlings, higher temperatures experienced by mother trees during the reproductive period delayed bud burst in control conditions, but advanced bud burst in heated seedlings. In beech seedlings, bud burst timing advanced both with increasing temperatures during the reproductive period of the parents and with experimental warming of the seedlings. Relative diameter growth was enhanced in control oak seedlings but decreased with warming when the mother plant experienced higher temperatures during the reproductive period.
  • Overall, oak displayed more plastic responses to temperatures than beech. Our results emphasise that temperature during the reproductive period can be a potential determinant of tree responses to climate change.
  相似文献   

3.
  • Morphological and functional seed traits have important roles in characterising the species regeneration niche and help to understand the reproductive biology of rare and threatened plants, which can thus support appropriate plant conservation measures.
  • Seed morphometric and dispersal kinetics of the critically endangered Dioscorea strydomiana were measured and compared with those of four other Dioscorea species, and seed germination response under constant temperatures (5–35 °C) was compared with that of the congeneric and widespread D. sylvatica.
  • Seed mass of D. strydomiana (ca. 14 mg) was twice that of D. sylvatica, but similar to or smaller than the other species examined. Seeds of D. strydomiana have the lowest speed of descent and lowest variability in most of the morphological traits considered, suggesting lower phenotypic plasticity but higher variance in the wing‐loading value. Seeds of D. strydomiana reached maximum germination at 15 °C (ca. 47%), which decreased slightly to ca. 37% at 25 °C and was completely inhibited at 35 °C. D. sylvatica seeds started to germinate at 10 °C (ca. 3%), reached 75–80% germination at 15–20 °C and maximum (ca. 90%) at 25–30 °C. Base temperatures for germination (Tb) were 9.3 and 5.7 °C, for D. strydomiana and D. sylvatica, respectively. Due to the higher germination percentages of D. sylvatica, ceiling and optimum temperatures could also be modelled for this species, suggesting higher sensitivity to high temperature for seeds of D. strydomiana.
  • The detected poor seed lot quality of D. strydomiana suggests difficulties in reproduction from seed, highlighting the need for further investigation and conservation actions for this threatened yam species.
  相似文献   

4.
5.
Abstract Seed characteristics are key components of plant fitness that are influenced by temperature in their maternal environment, and temperature will change with global warming. To study the effect of such temperature changes, Arabidopsis thaliana plants were grown to produce seeds along a uniquely designed polyethylene tunnel having a thermal gradient reflecting local global warming predictions. Plants therefore experienced the same variations in temperature and light conditions but different mean temperatures. A range of seed‐related plant fitness estimates were measured. There were dramatic non‐linear temperature effects on the germination behaviour in two contrasting ecotypes. Maternal temperatures lower than 15–16 °C resulted in significantly greater primary dormancy. In addition, the impact of nitrate in the growing media on dormancy was shown only by seeds produced below 15–16 °C. However, there were no consistent effects on seed yield, number, or size. Effects on germination behaviour were shown to be a species characteristic responding to temperature and not time of year. Elevating temperature above this critical value during seed development has the potential to dramatically alter the timing of subsequent seed germination and the proportion entering the soil seed bank. This has potential consequences for the whole plant life cycle and species fitness.  相似文献   

6.
  • Seed germination, a critical stage of the plant life cycle providing a link between seeds and seedlings, is commonly temperature-dependent. The global average surface temperature is expected to rise, but little is known about the responses of seed germination of woody plants in temperate forests to warming.
  • In the present study, dried seeds of 23 common woody species in temperate secondary forests were incubated at three temperature sequences without cold stratification and after experiencing cold stratification. We calculated five seed germination indices and the comprehensive membership function value that summarized the above indicators.
  • Compared to the control, +2 and +4 °C treatments without cold stratification shortened germination time by 14% and 16% and increased the germination index by 17% and 26%, respectively. For stratified seeds, +4 °C treatment increased germination percentage by 49%, and +4 and +2 °C treatments increased duration of germination and the germination index, and shortened mean germination time by 69%, 458%, 29% and 68%, 110%, 12%, respectively. The germination of Fraxinus rhynchophylla and Larix kaempferi were most sensitive to warming without and with cold stratification, respectively. Seed germination of shrubs was the least sensitive to warming among functional types.
  • These findings indicate warming (especially extreme warming) will enhance the seedling recruitment of temperate woody species, primarily via shortening the germination time, particularly for seeds that have undergone cold stratification. In addition, shrubs might narrow their distribution range
  相似文献   

7.
  • Soil seed banks are essential elements of plant population dynamics, enabling species to maintain genetic variability, withstand periods of adversity and persist over time, including for cactus species. However knowledge of the soil seed bank in cacti is scanty. In this study, over a 5‐year period we studied the seed bank dynamics, seedling emergence and nurse plant facilitation of Polaskia chende, an endemic columnar cactus of central Mexico.
  • P. chende seeds were collected for a wild population in Puebla, Mexico. Freshly collected seeds were sown at 25 °C and 12‐h photoperiod under white light, far‐red light and darkness. The collected seeds were divided in two lots, the first was stored in the laboratory and the second was use to bury seeds in open areas and beneath a shrub canopy. Seeds were exhumed periodically over 5 years. At the same time seeds were sown in open areas and beneath shrub canopies; seedling emergence and survival were recorded over different periods of time for 5 years.
  • The species forms long‐term persistent soil seed banks. The timing of seedling emergence via germination in the field was regulated by interaction between light, temperature and soil moisture. Seeds entered secondary dormancy at specific times according to the expression of environmental factors, demonstrating irregular dormancy cycling.
  • Seedling survival of P. chende was improved under Acacia constricta nurse plants. Finally, plant facilitation affected the soil seed bank dynamics as it promoted the formation of a soil seed bank, but not its persistence.
  相似文献   

8.
  • By the year 2100, temperatures are predicted to increase by about 6 °C at higher latitudes and about 3 °C in the tropics. In spite of the smaller increase in the tropics, consequences may be more severe because the climatic niches of tropical species are generally assumed to be rather narrow due to a high degree of climate stability and higher niche specialisation. However, rigorous data to back up this notion are rare.
  • We chose the megadiverse genus Anthurium (Araceae) for study. Considering that the regeneration niche of a species is crucial for overall niche breadth, we focused on the response of germination and early growth through a temperature range of 24 °C of 15 Anthurium species, and compared the thermal niche breadth (TNB) with the temperature conditions in their current range, modelled from occurrence records.
  • Surprisingly, an increase of 3 °C would lead to a larger overlap of TNB of germination and modelled in situ temperature conditions, while the overlap of TNB of growth with in situ conditions under current and future conditions is statistically indistinguishable.
  • We conclude that future temperatures tend to be closer to the thermal optima of most species. Whether this really leads to an increase in performance depends on other abiotic and biotic factors, most prominently potentially changing precipitation patterns.
  相似文献   

9.
  • Helichrysum microphyllum subsp. tyrrhenicum (Asteraceae) is an endemic taxon of Sardinia and Corsica, where it grows at different altitudes. The objective of this study was to investigate the seed traits and germination behaviour of four Sardinian populations of this taxon located at different altitudes.
  • Seed traits were evaluated, and germination tests were carried out by incubating seeds at a range of constant (5–30 °C) and alternating (25/10 °C) temperatures. The dry after‐ripening (DAR) pre‐treatment was also applied by storing seed in dry conditions for 3 months at 25 °C. Seed traits and germination behaviour data were statistically analysed to identify if there was a correlation with altitude.
  • Differences in seed size, area and mass among populations were recorded, however, no relationship was found with altitude. High germination percentages were obtained in all populations, both in untreated and DAR seeds, and were positively affected by alternating temperatures. The final germination percentage and time required to reach 50% final germination (T50) showed no relationship with altitude.
  • The differences in seed traits and germination detected among the studied populations of H. microphyllum subsp. tyrrhenicum were not correlated with altitude. This study provides new and important knowledge for this taxon. H. microphyllum subsp. tyrrhenicum is characterised by high germination percentages and low T50 values and does not seem to require any dormancy‐breaking treatment. This species represents a high‐potential native plant species that should be considered within environmental management plans.
  相似文献   

10.
11.
  • Seed germination is the earliest trait expressed in a plant's life history, and it can directly affect the expression of post‐germination traits. Plant height is central to plant ecological strategies, because it is a major determinant of the ability of a species to compete for light. Thus, linking seed germination and plant height at the community level is very important to understanding plant fitness and community structure.
  • Here, we tested storage condition and temperature requirements for germination of 31 species from a wetland plant community on the eastern Tibet Plateau and analysed correlation of germination traits with plant height in relation to storage condition.
  • Germination percentage was positively related to plant height, and this relationship disappeared when seeds were incubated at a low temperature (i.e. 5 °C) or after they were stored under wet‐cold conditions. The response of seeds to dry+wet–cold storage was negatively related to plant height. Based on the scores of each species on the first two principal components derived from PCA, species were classified into two categories by hierarchical clustering, and there was a significant difference between germination and plant height of species in these two categories.
  • These results suggest that the requirements for seed germination together with seasonal change in environmental conditions determine the window for germination and, in turn, plant growth season and resource utilisation and ultimately plant height.
  相似文献   

12.
  • Cycling of sensitivity to physical dormancy (PY) break has been documented in herbaceous species. However, it has not been reported in tree seeds, nor has the effect of seed size on sensitivity to PY‐breaking been evaluated in any species. Thus, the aims of this study were to investigate how PY is broken in seeds of the tropical legume tree Senna multijuga, if seeds exhibit sensitivity cycling and if seed size affects induction into sensitivity.
  • Dormancy and germination were evaluated in intact and scarified seeds from two collections of S. multijuga. The effects of temperature, moisture and seed size on induction of sensitivity to dormancy‐breaking were assessed, and seasonal changes in germination and persistence of buried seeds were determined. Reversal of sensitivity was also investigated.
  • Fresh seeds were insensitive to dormancy break at wet–high temperatures, and an increase in sensitivity occurred in buried seeds after they experienced low temperatures during winter (dry season). Temperatures ≤20 °C increased sensitivity, whereas temperatures ≥30 °C decreased it regardless of moisture conditions. Dormancy was broken in sensitive seeds by incubating them at 35 °C. Sensitivity could be reversed, and large seeds were more sensitive than small seeds to sensitivity induction.
  • Seeds of S. multijuga exhibit sensitivity cycling to PY‐breaking. Seeds become sensitive during winter and can germinate with the onset of the spring–summer rainy season in Brazil. Small seeds are slower to become sensitive than large ones, and this may be a mechanism by which germination is spread over time. Sensitive seeds that fail to germinate become insensitive during exposure to drought during summer. This is the first report of sensitivity cycling in a tree species.
  相似文献   

13.
  • Dormancy cycling is a key mechanism that contributes to the maintenance of long‐term persistent soil seed banks, but has not been recorded in long‐lived woody shrub species from fire‐prone environments. Such species rely on seed banks and dormancy break as important processes for post‐fire recruitment and recovery.
  • We used germination experiments with smoke treatments on fresh seeds and those buried for 1 year (retrieved in spring) and 1.5 years (retrieved the following late autumn) to investigate whether Asterolasia buxifolia, a shrub from fire‐prone south‐eastern Australia with physiologically dormant seeds, exhibited dormancy cycling.
  • All seeds had an obligation for winter seasonal temperatures and smoke to promote germination, even after ageing in the soil. A high proportion of germination was recorded from fresh seeds. but germination after the first retrieval was significantly lower, despite high seed viability. After the second retrieval, germination returned to the initial level. This indicates a pattern of annual dormancy cycling; one of the few observations, to our knowledge, for a perennial species. Additionally, A. buxifolia’s winter temperature and smoke requirements did not change over time, highlighting the potential for seeds to remain conditionally dormant (i.e. restricted to a narrow range of germination conditions) for long periods.
  • For physiologically dormant species, such as A. buxifolia, we conclude that dormancy cycling is an important driver of successful regeneration, allowing seed bank persistence, sometimes for decades, during fire‐free periods unsuitable for successful recruitment, while ensuring that a large proportion of seeds are available for recruitment when a fire occurs.
  相似文献   

14.
  • Fruiting season of many Sri Lankan tropical montane species is not synchronised and may not occur when conditions are favourable for seedling establishment. We hypothesised that species with different fruiting seasons have different seed dormancy mechanisms to synchronise timing of germination with a favourable season for establishment. Using six species with different fruiting seasons, we tested this hypothesis.
  • Germination and imbibition of intact and manually scarified seeds were studied. Effect of GA3 on germination was examined. Embryo length:seed length (E:S) ratio of freshly matured seeds and of those with a split seed coat was determined. Time taken for radicle and plumule emergence and morphological changes of the embryos were recorded.
  • The radicle emerged from Ardisia missionis, Bheza nitidissima and Gaetnera walkeri seeds within 30 days, whereas it took >30 days in other species. Embryos grew in seeds of B. nitidissima and G. walkeri prior to radicle emergence but not in Microtropis wallichiana, Nothapodytes nimmoniana and Symplocos cochinchinensis. A considerable delay was observed between radicle and plumule emergence in all six species. Warm stratification and/or GA3 promoted germination of all species.
  • All the tested species have epicotyl dormancy. Seeds of B. nitidissima and G. walkeri have non‐deep simple morphophysiological epicotyl dormancy, and the other four species have non‐deep physiological epicotyl dormancy. Differences in radicle and epicotyl dormancy promote synchronisation of germination to a favourable time for seedling development. Therefore, information on dormancy‐breaking and germination requirements of both radicle and epicotyl are needed to determine the kind of dormancy of a particular species.
  相似文献   

15.
Research efforts around the world have been increasingly devoted to investigating changes in C3 and C4 species'' abundance or distribution with global warming, as they provide important insight into carbon fluxes and linked biogeochemical cycles. However, changes in the early life stage (e.g. germination) of C3 and C4 species in response to global warming, particularly with respect to asymmetric warming, have received less attention. We investigated germination percentage and rate of C3 and C4 species under asymmetric (+3/+6°C at day/night) and symmetric warming (+5/+5°C at day/night), simulated by alternating temperatures. A thermal time model was used to calculate germination base temperature and thermal time constant. Two additional alternating temperature regimes were used to test temperature metrics effect. The germination percentage and rate increased continuously for C4 species, but increased and then decreased with temperature for C3 species under both symmetric and asymmetric warming. Compared to asymmetric warming, symmetric warming significantly overestimated the speed of germination percentage change with temperature for C4 species. Among the temperature metrics (minimum, maximum, diurnal temperature range and average temperature), maximum temperature was most correlated with germination of C4 species. Our results indicate that global warming may favour germination of C4 species, at least for the C4 species studied in this work. The divergent effects of asymmetric and symmetric warming on plant germination also deserve more attention in future studies.  相似文献   

16.
  • Dormancy cycles are an important mechanism for avoiding seed germination under unfavourable periods for seedling establishment. This mechanism has been scarcely studied in tropical species. Here, we studied three tropical and perennial species of Xyris, X. asperula, X. subsetigera and X. trachyphylla, to investigate in situ longevity and the existence of seasonal seed dormancy cycles.
  • Seeds of three species of Xyris were buried in their natural habitat, with samples exhumed bimonthly for 18 months. Germination of exhumed seeds was assessed under a 12‐h photoperiod over a broad range of temperatures. Seeds of X. trachyphylla were also subjected to treatments to overcome secondary dormancy.
  • Seeds of all species are able to form a persistent seed bank and exhibit seasonal changes in germinability. Secondary dormancy was acquired during the rainy summer and was overcome during the subsequent dry season (autumn/winter). Desiccation partially overcomes secondary dormancy in X. trachyphylla seeds.
  • Soil seed bank persistence and synchronisation of seed germination under favourable conditions for seedling establishment contribute to the persistence and regeneration of X. asperula, X. subsetigera and X. trachyphylla in their natural environment.
  相似文献   

17.
Accurate prediction of germination for species used for semi-arid land revegetation would support selection of plant materials for specific climatic conditions and sites. Wet thermal-time models predict germination time by summing progress toward germination subpopulation percentages as a function of temperature across intermittent wet periods or within singular wet periods. Wet periods may be defined by any reasonable seedbed water potential above which seeds are expected to imbibe sufficiently to germinate. These models may be especially applicable to the Artemisia steppe of the western U.S.A. where water availability limits germination in summer and early fall while cool temperatures limit germination in late fall, winter, and spring when soil water is available. To test accuracy of wet thermal-time models we placed seedbags with seeds of five species commonly used in wildland revegetation, as well as two collections of the invasive annual grass, Bromus tectorum L. into Artemisia tridentata Nutt. ssp. wyomingensis Beetle and Young zone seedbeds for 19 field incubation periods over four seasons. Hourly surface (1–3 cm) soil temperatures and soil water potentials were measured near the seedbags. These data were input into thermal-time models which predicted time to germination for each seedbag retrieval date. Binomial data representing agreement (1) or lack of agreement (0) of predicted and actual germination for each retrieval date were analyzed using logistic regression. Thermal summation method, season, water potential threshold, and species most affected accuracy of predictions (P < 0.0002). A model which defined a wet period as ≥−1.5 MPa soil water potential and summed progress toward germination across intermittent wet periods was most accurate in predicting actual germination by a retrieval date. Across all species, this model correctly predicted that germination would occur in seedbags 75–95% of the time over the latewinter to mid-spring seasons, but only 50–71% of the time for the fall-early winter season when time of soil water availability was least. Although the wet thermal-time model overestimated time to germination for some species and seasons, its accuracy should be high enough to evaluate germination potential by mid-spring for different species, sites, and climatic conditions.  相似文献   

18.
  • Brassica insularis is a protected plant that grows on both coastal and inland cliffs in the western Mediterranean Basin. The objective of this study was to test if any variability exists in the salt stress response during seed germination and seedling development in this species relative to its provenance habitat.
  • Variability among three populations in the salt stress effects on seed germination and recovery under different temperatures was evaluated. The effect of nebulisation of a salt solution on seedling development was evaluated between populations growing at different distances from the sea.
  • Seeds of B. insularis could germinate at NaCl concentrations up to 200 mm . Seed viability was negatively affected by salt, and recovery ability decreased with increasing temperature or salinity. Inter‐population variability was detected in salt response during the seed germination phase, as well as in seedling salt spray tolerance. The inland population seedlings had drastically decreased survival and life span and failed to survive to the end of the experiment. In contrast, at least 90% of the coastal seedlings survived, even when sprayed at the highest frequency with salt solution.
  • This study allowed investigation of two natural factors, soil salinity and marine aerosols, widely present in the B. insularis habitat, and provided the first insights into ecology of this protected species and its distribution in the Mediterranean. These results might be useful in understanding the actual distributions of other species with the same ecology that experience these same abiotic parameters.
  相似文献   

19.
20.
Recent changes in climate have led to significant shifts in phenology, with many studies demonstrating advanced phenology in response to warming temperatures. The rate of temperature change is especially high in the Arctic, but this is also where we have relatively little data on phenological changes and the processes driving these changes. In order to understand how Arctic plant species are likely to respond to future changes in climate, we monitored flowering phenology in response to both experimental and ambient warming for four widespread species in two habitat types over 21 years. We additionally used long‐term environmental records to disentangle the effects of temperature increase and changes in snowmelt date on phenological patterns. While flowering occurred earlier in response to experimental warming, plants in unmanipulated plots showed no change or a delay in flowering over the 21‐year period, despite more than 1 °C of ambient warming during that time. This counterintuitive result was likely due to significantly delayed snowmelt over the study period (0.05–0.2 days/yr) due to increased winter snowfall. The timing of snowmelt was a strong driver of flowering phenology for all species – especially for early‐flowering species – while spring temperature was significantly related to flowering time only for later‐flowering species. Despite significantly delayed flowering phenology, the timing of seed maturation showed no significant change over time, suggesting that warmer temperatures may promote more rapid seed development. The results of this study highlight the importance of understanding the specific environmental cues that drive species’ phenological responses as well as the complex interactions between temperature and precipitation when forecasting phenology over the coming decades. As demonstrated here, the effects of altered snowmelt patterns can counter the effects of warmer temperatures, even to the point of generating phenological responses opposite to those predicted by warming alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号