首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Ageing research benefits from the study of accelerated ageing syndromes such as Hutchinson-Gilford progeria syndrome (HGPS), characterized by the early appearance of symptoms normally associated with advanced age. Most HGPS cases are caused by a mutation in the gene LMNA, which leads to the synthesis of a truncated precursor of lamin A known as progerin that lacks the target sequence for the metallopotease FACE-1/ZMPSTE24 and remains constitutively farnesylated. The use of Face-1/Zmpste24-deficient mice allowed us to demonstrate that accumulation of farnesylated prelamin A causes severe abnormalities of the nuclear envelope, hyper-activation of p53 signalling, cellular senescence, stem cell dysfunction and the development of a progeroid phenotype. The reduction of prenylated prelamin A levels in genetically modified mice leads to a complete reversal of the progeroid phenotype, suggesting that inhibition of protein farnesylation could represent a therapeutic option for the treatment of progeria. However, we found that both prelamin A and its truncated form progerin can undergo either farnesylation or geranylgeranylation, revealing the need of targeting both activities for an efficient treatment of HGPS. Using Face-1/Zmpste24-deficient mice as model, we found that a combination of statins and aminobisphosphonates inhibits both types of modifications of prelamin A and progerin, improves the ageing-like symptoms of these mice and extends substantially their longevity, opening a new therapeutic possibility for human progeroid syndromes associated with nuclear-envelope defects. We discuss here the use of this and other animal models to investigate the molecular mechanisms underlying accelerated ageing and to test strategies for its treatment.  相似文献   

2.
Genomic instability in laminopathy-based premature aging   总被引:15,自引:0,他引:15  
Premature aging syndromes often result from mutations in nuclear proteins involved in the maintenance of genomic integrity. Lamin A is a major component of the nuclear lamina and nuclear skeleton. Truncation in lamin A causes Hutchinson-Gilford progerial syndrome (HGPS), a severe form of early-onset premature aging. Lack of functional Zmpste24, a metalloproteinase responsible for the maturation of prelamin A, also results in progeroid phenotypes in mice and humans. We found that Zmpste24-deficient mouse embryonic fibroblasts (MEFs) show increased DNA damage and chromosome aberrations and are more sensitive to DNA-damaging agents. Bone marrow cells isolated from Zmpste24-/- mice show increased aneuploidy and the mice are more sensitive to DNA-damaging agents. Recruitment of p53 binding protein 1 (53BP1) and Rad51 to sites of DNA lesion is impaired in Zmpste24-/- MEFs and in HGPS fibroblasts, resulting in delayed checkpoint response and defective DNA repair. Wild-type MEFs ectopically expressing unprocessible prelamin A show similar defects in checkpoint response and DNA repair. Our results indicate that unprocessed prelamin A and truncated lamin A act dominant negatively to perturb DNA damage response and repair, resulting in genomic instability which might contribute to laminopathy-based premature aging.  相似文献   

3.
编码核层蛋白A(lamin A)的LMNA基因突变导致法尼基化的核层蛋白A前体(prelamin A)不能被进一步加工成成熟的核层蛋白A,从而导致一种Hutchinson-Gilford早老症综合征(Hutchinson-Gilford progeria syndrome,HGPS)。一种更严重的早老症——限制性皮肤病(restrictive dermopathy,RD),是由于缺失核层蛋白A前体加工过程中的剪切酶ZMPSTE24引起的。ZMPSTE24的缺失阻止了法尼基化的核层蛋白A前体不能正常加工成为成熟的核层蛋白A,同时导致法尼基化的核层蛋白A前体的堆积。在HGPS和RD病人的成纤维细胞中,发现法尼基化的核层蛋白A前体都定位在核膜,从而影响细胞核膜的完整性,并导致细胞核形的异常,进而导致衰老。最近研究表明经过法尼基酰转移酶抑制剂(farnesyltransferase inhibitor,FTI)处理后的细胞的核形异常减少。同时,FTI能够改善HGPS和RD小鼠的早老症状。本文就核层蛋白A前体的法尼基化对衰老的影响有关研究进展作一综述。  相似文献   

4.
Hutchinson–Gilford progeria syndrome (HGPS) is caused by the accumulation of mutant prelamin A (progerin) in the nuclear lamina, resulting in increased nuclear stiffness and abnormal nuclear architecture. Nuclear mechanics are tightly coupled to cytoskeletal mechanics via lamin A/C. However, the role of cytoskeletal/nuclear mechanical properties in mediating cellular senescence and the relationship between cytoskeletal stiffness, nuclear abnormalities, and senescent phenotypes remain largely unknown. Here, using muscle‐derived mesenchymal stromal/stem cells (MSCs) from the Zmpste24?/? (Z24?/?) mouse (a model for HGPS) and human HGPS fibroblasts, we investigated the mechanical mechanism of progerin‐induced cellular senescence, involving the role and interaction of mechanical sensors RhoA and Sun1/2 in regulating F‐actin cytoskeleton stiffness, nuclear blebbing, micronuclei formation, and the innate immune response. We observed that increased cytoskeletal stiffness and RhoA activation in progeria cells were directly coupled with increased nuclear blebbing, Sun2 expression, and micronuclei‐induced cGAS‐Sting activation, part of the innate immune response. Expression of constitutively active RhoA promoted, while the inhibition of RhoA/ROCK reduced cytoskeletal stiffness, Sun2 expression, the innate immune response, and cellular senescence. Silencing of Sun2 expression by siRNA also repressed RhoA activation, cytoskeletal stiffness and cellular senescence. Treatment of Zmpste24?/? mice with a RhoA inhibitor repressed cellular senescence and improved muscle regeneration. These results reveal novel mechanical roles and correlation of cytoskeletal/nuclear stiffness, RhoA, Sun2, and the innate immune response in promoting aging and cellular senescence in HGPS progeria.  相似文献   

5.
衰老是一种生理完整性丧失,功能受损,疾病和死亡风险增加的过程。早老症(HGPS)是一种加速化的衰老疾病,是研究人类正常衰老理想的疾病模型。由LMNA基因突变产生prelamin AΔ50在细胞内累积是造成早老症的主要原因,早老症病人表现出寿命急剧缩短,老化特征明显的现象,例如脱发、皮下脂肪减少、骨质疏松以及早逝。 锌金属蛋白酶Zmpste24 是prelamin A加工成为成熟lamin A蛋白的关键酶。敲除Zmpste24基因的小鼠表现出与早老症高度一致的衰老表型,同时也存在非常相似的发病机制,如染色质异常、DNA损伤和干细胞功能缺失等。Zmpste24缺失小鼠作为典型的早老模型小鼠因其衰老周期短,衰老特征明显而获得广泛应用。本文总结了以Zmpste24缺失早老小鼠为模型取得的早老相关分子机制的研究进展,以及抗衰老策略的最新发现。  相似文献   

6.
Several human progerias, including Hutchinson-Gilford progeria syndrome (HGPS), are caused by the accumulation at the nuclear envelope of farnesylated forms of truncated prelamin A, a protein that is also altered during normal aging. Previous studies in cells from individuals with HGPS have shown that farnesyltransferase inhibitors (FTIs) improve nuclear abnormalities associated with prelamin A accumulation, suggesting that these compounds could represent a therapeutic approach for this devastating progeroid syndrome. We show herein that both prelamin A and its truncated form progerin/LADelta50 undergo alternative prenylation by geranylgeranyltransferase in the setting of farnesyltransferase inhibition, which could explain the low efficiency of FTIs in ameliorating the phenotypes of progeroid mouse models. We also show that a combination of statins and aminobisphosphonates efficiently inhibits both farnesylation and geranylgeranylation of progerin and prelamin A and markedly improves the aging-like phenotypes of mice deficient in the metalloproteinase Zmpste24, including growth retardation, loss of weight, lipodystrophy, hair loss and bone defects. Likewise, the longevity of these mice is substantially extended. These findings open a new therapeutic approach for human progeroid syndromes associated with nuclear-envelope abnormalities.  相似文献   

7.
Hutchinson-Gilford progeria syndrome (HGPS) is caused by a LMNA mutation that leads to the synthesis of a mutant prelamin A that is farnesylated but cannot be further processed to mature lamin A. A more severe progeroid disorder, restrictive dermopathy (RD), is caused by the loss of the prelamin A-processing enzyme, ZMPSTE24. The absence of ZMPSTE24 prevents the endoproteolytic processing of farnesyl-prelamin A to mature lamin A and leads to the accumulation of farnesyl-prelamin A. In both HGPS and RD, the farnesyl-prelamin A is targeted to the nuclear envelope, where it interferes with the integrity of the nuclear envelope and causes misshapen cell nuclei. Recent studies have shown that the frequency of misshapen nuclei can be reduced by treating cells with a farnesyltransferase inhibitor (FTI). Also, administering an FTI to mouse models of HGPS and RD ameliorates the phenotypes of progeria. These studies have prompted interest in testing the efficacy of FTIs in children with HGPS.  相似文献   

8.
9.

Background

The proteolytic maturation of the nuclear protein lamin A by the zinc metalloprotease ZMPSTE24 is critical for human health. The lamin A precursor, prelamin A, undergoes a multi-step maturation process that includes CAAX processing (farnesylation, proteolysis and carboxylmethylation of the C-terminal CAAX motif), followed by ZMPSTE24-mediated cleavage of the last 15 amino acids, including the modified C-terminus. Failure to cleave the prelamin A “tail”, due to mutations in either prelamin A or ZMPSTE24, results in a permanently prenylated form of prelamin A that underlies the premature aging disease Hutchinson-Gilford Progeria Syndrome (HGPS) and related progeroid disorders.

Methodology/Principal Findings

Here we have investigated the features of the prelamin A substrate that are required for efficient cleavage by ZMPSTE24. We find that the C-terminal 41 amino acids of prelamin A contain sufficient context to allow cleavage of the tail by ZMPSTE24. We have identified several mutations in amino acids immediately surrounding the cleavage site (between Y646 and L647) that interfere with efficient cleavage of the prelamin A tail; these mutations include R644C, L648A and N650A, in addition to the previously reported L647R. Our data suggests that 9 of the 15 residues within the cleaved tail that lie immediately upstream of the CAAX motif are not critical for ZMPSTE24-mediated cleavage, as they can be replaced by the 9 amino acid HA epitope. However, duplication of the same 9 amino acids (to increase the distance between the prenyl group and the cleavage site) impairs the ability of ZMPSTE24 to cleave prelamin A.

Conclusions/Significance

Our data reveals amino acid preferences flanking the ZMPSTE24 cleavage site of prelamin A and suggests that spacing from the farnesyl-cysteine to the cleavage site is important for optimal ZMPSTE24 cleavage. These studies begin to elucidate the substrate requirements of an enzyme activity critical to human health and longevity.  相似文献   

10.
Proteins establish and maintain a distinct intracellular localization by means of targeting, retention, and retrieval signals, ensuring most proteins reside predominantly in one cellular location. The enzymes involved in the maturation of lamin A present a challenge to this paradigm. Lamin A is first synthesized as a 74-kDa precursor, prelamin A, with a C-terminal CaaX motif and undergoes a series of posttranslational modifications including CaaX processing (farnesylation, aaX cleavage and carboxylmethylation), followed by endoproteolytic cleavage by Zmpste24. Failure to cleave prelamin A results in progeria and related premature aging disorders. Evidence suggests prelamin A is imported directly into the nucleus where it is processed. Paradoxically, the processing enzymes have been shown to reside in the cytosol (farnesyltransferase), or are ER membrane proteins (Zmpste24, Rce1, and Icmt) with their active sites facing the cytosol. Here we have reexamined the cellular site of prelamin A processing, and show that the mammalian and yeast processing enzymes Zmpste24 and Icmt exhibit a dual localization to the inner nuclear membrane, as well as the ER membrane. Our findings reveal the nucleus to be a physiologically relevant location for CaaX processing, and provide insight into the biology of a protein at the center of devastating progeroid diseases.  相似文献   

11.
Hutchinson–Gilford progeria syndrome (HGPS) causes premature aging in children, with adipose tissue, skin and bone deterioration, and cardiovascular impairment. In HGPS cells and mouse models, high levels of interleukin‐6, an inflammatory cytokine linked to aging processes, have been detected. Here, we show that inhibition of interleukin‐6 activity by tocilizumab, a neutralizing antibody raised against interleukin‐6 receptors, counteracts progeroid features in both HGPS fibroblasts and LmnaG609G/G609G progeroid mice. Tocilizumab treatment limits the accumulation of progerin, the toxic protein produced in HGPS cells, rescues nuclear envelope and chromatin abnormalities, and attenuates the hyperactivated DNA damage response. In vivo administration of tocilizumab reduces aortic lesions and adipose tissue dystrophy, delays the onset of lipodystrophy and kyphosis, avoids motor impairment, and preserves a good quality of life in progeroid mice. This work identifies tocilizumab as a valuable tool in HGPS therapy and, speculatively, in the treatment of a variety of aging‐related disorders.  相似文献   

12.
13.
Genetic studies in Saccharomyces cerevisiae identified two genes, STE24 and RCE1, involved in cleaving the three carboxyl-terminal amino acids from isoprenylated proteins that terminate with a CAAX sequence motif. Ste24p cleaves the carboxyl-terminal "-AAX" from the yeast mating pheromone a-factor, whereas Rce1p cleaves the -AAX from both a-factor and Ras2p. Ste24p also cleaves the amino terminus of a-factor. The mouse genome contains orthologues for both yeast RCE1 and STE24. We previously demonstrated, with a gene-knockout experiment, that mouse Rce1 is essential for development and that Rce1 is entirely responsible for the carboxyl-terminal proteolytic processing of the mouse Ras proteins. In this study, we cloned mouse Zmpste24, the orthologue for yeast STE24 and showed that it could promote a-factor production when expressed in yeast. Then, to assess the importance of Zmpste24 in development, we generated Zmpste24-deficient mice. Unlike the Rce1 knockout mice, Zmpste24-deficient mice survived development and were fertile. Since no natural substrates for mammalian Zmpste24 have been identified, yeast a-factor was used as a surrogate substrate to investigate the biochemical activities in membranes from the cells and tissues of Zmpste24-deficient mice. We demonstrate that Zmpste24-deficient mouse membranes, like Ste24p-deficient yeast membranes, have diminished CAAX proteolytic activity and lack the ability to cleave the amino terminus of the a-factor precursor. Thus, both enzymatic activities of yeast Ste24p are conserved in mouse Zmpste24, but these enzymatic activities are not essential for mouse development or for fertility.  相似文献   

14.
Mutations in the lamin A/C gene cause the rare genetic disorder Hutchinson-Gilford progeria syndrome (HGPS). The prevalent mutation results in the production of a mutant lamin A protein with an internal 50 amino acid deletion which causes a cellular aging phenotype characterized by growth defects, limited replicative lifespan, and nuclear membrane abnormalities. However, the relevance of these findings to normal human aging is unclear. In this study, we demonstrate that increased levels of wild-type lamin A in normal human cells result in decreased replicative lifespan and nuclear membrane abnormalities that lead to apoptotic cell death and senescence in a manner that is strongly reminiscent of the phenotype shown by HGPS cells. In contrast to the accelerated aging defects observed in HGPS cells, the progeroid phenotype resulting from increased expression of wild-type lamin A can be rescued by overexpression of ZMPSTE24, the metalloproteinase responsible for the removal of the farnesylated carboxyl terminal region of lamin A. Furthermore, farnesyltransferase inhibitors also serve to reverse the progeroid phenotype resulting from increased lamin A expression. Significantly, cells expressing elevated levels of lamin A display abnormal lamin A localization and similar alterations in the nuclear distribution of lamin A are also observed in cells from old-age individuals. These data demonstrate that the metabolism of wild-type lamin A is delicately poised and even in the absence of disease-linked mutations small perturbations in this system are sufficient to cause prominent nuclear defects and result in a progeroid phenotype.  相似文献   

15.
Heterochromatin protein 1 (HP1) interacts with various proteins, including lamins, to play versatile functions within nuclei, such as chromatin remodeling and DNA repair. Accumulation of prelamin A leads to misshapen nuclei, heterochromatin disorganization, genomic instability, and premature aging in Zmpste24-null mice. Here, we investigated the effects of prelamin A on HP1α homeostasis, subcellular distribution, phosphorylation, and their contribution to accelerated senescence in mouse embryonic fibroblasts (MEFs) derived from Zmpste24−/− mice. The results showed that the level of HP1α was significantly increased in Zmpste24−/− cells. Although prelamin A interacted with HP1α in a manner similar to lamin A, HP1α associated with the nuclease-resistant nuclear matrix fraction was remarkably increased in Zmpste24−/− MEFs compared with that in wild-type littermate controls. In wild-type cells, HP1α was phosphorylated at Thr50, and the phosphorylation was maximized around 30 min, gradually dispersed 2 h after DNA damage induced by camptothecin. However, the peak of HP1α phosphorylation was significantly compromised and appeared until 2 h, which is correlated with the delayed maximal formation of γ-H2AX foci in Zmpste24−/− MEFs. Furthermore, knocking down HP1α by siRNA alleviated the delayed DNA damage response and accelerated senescence in Zmpste24−/− MEFs, evidenced by the rescue of the delayed γ-H2AX foci formation, downregulation of p16, and reduction of senescence-associated β-galactosidase activity. Taken together, these findings establish a functional link between prelamin A, HP1α, chromatin remodeling, DNA repair, and early senescence in Zmpste24-deficient mice, suggesting a potential therapeutic strategy for laminopathy-based premature aging via the intervention of HP1α.  相似文献   

16.
17.
Lipodystrophy is a major disease involving severe alterations of adipose tissue distribution and metabolism. Mutations in genes encoding the nuclear envelope protein lamin A or its processing enzyme, the metalloproteinase Zmpste24, cause diverse human progeroid syndromes that are commonly characterized by a selective loss of adipose tissue. Similarly to humans, mice deficient in Zmpste24 accumulate prelamin A and display phenotypic features of accelerated aging, including lipodystrophy. Herein, we report the proteome and phosphoproteome of adipose tissue as well as serum metabolome in lipodystrophy by using Zmpste24(-/-) mice as experimental model. We show that Zmpste24 deficiency enhanced lipolysis, fatty acid biogenesis and β-oxidation as well as decreased fatty acid re-esterification, thus pointing to an increased partitioning of fatty acid toward β-oxidation and away from storage that likely underlies the observed size reduction of Zmpste24-null adipocytes. Besides the mitochondrial proteins related to lipid metabolism, other protein networks related to mitochondrial function, including those involved in tricarboxylic acid cycle and oxidative phosphorylation, were up-regulated in Zmpste24(-/-) mice. These results, together with the observation of an increased mitochondrial response to oxidative stress, support the relationship between defective prelamin A processing and mitochondrial dysfunction and highlight the relevance of oxidative damage in lipoatrophy and aging. We also show that absence of Zmpste24 profoundly alters the processing of the cytoskeletal protein vimentin and identify a novel protein dysregulated in lipodystrophy, High-Mobility Group Box-1 Protein. Finally, we found several lipid derivates with important roles in energy balance, such as Lysophosphatidylcholine or 2-arachidonoylglycerol, to be dysregulated in Zmpste24(-/-) serum. Together, our findings in Zmpste24(-/-) mice may be useful to unveil the mechanisms underlying adipose tissue dysfunction and its overall contribution to body homeostasis in progeria and other lipodystrophy syndromes as well as to develop novel strategies to prevent or ameliorate these diseases.  相似文献   

18.
ATM‐mediated phosphorylation of KAP‐1 triggers chromatin remodeling and facilitates the loading and retention of repair proteins at DNA lesions. Mouse embryonic fibroblasts (MEFs) derived from Zmpste24?/? mice undergo early senescence, attributable to delayed recruitment of DNA repair proteins. Here, we show that ATM‐Kap‐1 signaling is compromised in Zmpste24?/? MEFs, leading to defective DNA damage‐induced chromatin remodeling. Knocking down Kap‐1 rescues impaired chromatin remodeling, defective DNA repair and early senescence in Zmpste24?/? MEFs. Thus, ATM‐Kap‐1‐mediated chromatin remodeling plays a critical role in premature aging, carrying significant implications for progeria therapy.  相似文献   

19.
Increasing evidence suggests that regulation of heterochromatin at the nuclear envelope underlies metabolic disease susceptibility and age‐dependent metabolic changes, but the mechanism is unknown. Here, we profile lamina‐associated domains (LADs) using lamin B1 ChIP‐Seq in young and old hepatocytes and find that, although lamin B1 resides at a large fraction of domains at both ages, a third of lamin B1‐associated regions are bound exclusively at each age in vivo. Regions occupied by lamin B1 solely in young livers are enriched for the forkhead motif, bound by Foxa pioneer factors. We also show that Foxa2 binds more sites in Zmpste24 mutant mice, a progeroid laminopathy model, similar to increased Foxa2 occupancy in old livers. Aged and Zmpste24‐deficient livers share several features, including nuclear lamina abnormalities, increased Foxa2 binding, de‐repression of PPAR‐ and LXR‐dependent gene expression, and fatty liver. In old livers, additional Foxa2 binding is correlated to loss of lamin B1 and heterochromatin (H3K9me3 occupancy) at these loci. Our observations suggest that changes at the nuclear lamina are linked to altered Foxa2 binding, enabling opening of chromatin and de‐repression of genes encoding lipid synthesis and storage targets that contribute to etiology of hepatic steatosis.  相似文献   

20.
Lamin A/C belongs to type V intermediate filaments and constitutes the nuclear lamina and nuclear matrix, where a variety of nuclear activities occur. Lamin A/C protein is firstly synthesized as a precursor and is further proteolytically processed by the zinc metallo-proteinase Ste24 (Zmpste24). Lamin A/C mutations cause a series of human diseases, collectively called laminopathies, the most severe of which is Hutchinson Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD) which arises due to an unsuccessful maturation of prelamin A. Although the exact underlying molecular mechanisms are still poorly understood, genomic instability, defective nuclear mechanics and mechanotransduction, have been hypothesized to be responsible for laminopathy-based premature ageing. Removal of unprocessed prelamin A (progerin) or rescue of defective DNA repair could be potential therapeutic strategies for the treatment of HGPS in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号