首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We describe a methodology for detecting differentially methylated regions (DMRs) and variably methylated regions (VMRs), in data from Infinium 450K arrays that are very widely used in epigenetic studies. Region detection is more specific than single CpG analysis as it increases the extent of common findings between studies, and is more powerful as it reduces the multiple testing problem inherent in epigenetic whole‐genome association studies (EWAS). In addition, results driven by single erroneous probes are removed. We have used multiple publicly available Infinium 450K data sets to generate a consensus list of DMRs for age, supporting the hypothesis that aging is associated with specific epigenetic modifications. The consensus aging DMRs are significantly enriched for muscle biogenesis pathways. We find a massive increase in VMRs with age and in regions of the genome associated with open chromatin and neurotransmission. Old age VMRs are significantly enriched for neurotransmission pathways. EWAS studies should investigate the role of this interindividual variation in DNA methylation, in the age‐associated diseases of sarcopenia and dementia.  相似文献   

3.
Research examining the association between exposure to a wide range of adverse childhood experiences (ACEs) and accelerated biological aging in older adults is limited. The purpose of this study was to examine the association of ACEs, both as a cumulative score and individual forms of adversity, with epigenetic age acceleration assessed using the DNA methylation (DNAm) GrimAge and DNAm PhenoAge epigenetic clocks in middle and older-aged adults. This cross-sectional study analyzed baseline and first follow-up data on 1445 participants aged 45–85 years from the Canadian Longitudinal Study on Aging (CLSA) who provided blood samples for DNAm analysis. ACEs were assessed using a validated self-reported questionnaire. Epigenetic age acceleration was estimated by regressing each epigenetic clock estimate on chronological age. Cumulative ACEs score was associated with higher DNAm GrimAge acceleration (β: 0.07; 95% CI: 0.02, 0.11) after adjusting for covariates. Childhood exposure to parental separation or divorce (β: 0.06; 95% CI: 0.00, 0.11) and emotional abuse (β: 0.06; 95% CI: 0.00, 0.12) were associated with higher DNAm GrimAge acceleration after adjusting for other adversities and covariates. There was no statistical association between ACEs and DNAm PhenoAge acceleration. Early life adversity may become biologically embedded and lead to premature biological aging, in relation to DNAm GrimAge, which estimates risk of mortality. Strategies that increase awareness of ACEs and promote healthy child development are needed to prevent ACEs.  相似文献   

4.
Comprehensive High-throughput Arrays for Relative Methylation (CHARM) was recently developed as an experimental platform and analytic approach to assess DNA methylation (DNAm) at a genome-wide level. Its initial implementation was for human and mouse. We adapted it for rat and sought to examine DNAm differences across tissues and brain regions in this model organism. We extracted DNA from liver, spleen, and three brain regions: cortex, hippocampus, and hypothalamus from adult Sprague Dawley rats. DNA was digested with McrBC, and the resulting methyl-depleted fraction was hybridized to the rat CHARM array along with a mock-treated fraction. Differentially methylated regions (DMRs) between tissue types were detected using normalized methylation log-ratios. In validating 24 of the most significant DMRs by bisulfite pyrosequencing, we detected large mean differences in DNAm, ranging from 33-59%, among the most significant DMRs in the across-tissue comparisons. The comparable figures for the hippocampus vs. hypothalamus DMRs were 14-40%, for the cortex vs. hippocampus DMRs, 12-29%, and for the cortex vs. hypothalamus DMRs, 5-35%, with a correlation of r(2) = 0.92 between the methylation differences in 24 DMRs predicted by CHARM and those validated by bisulfite pyrosequencing. Our adaptation of the CHARM array for the rat genome yielded highly robust results that demonstrate the value of this method in detecting substantial DNAm differences between tissues and across different brain regions. This platform should prove valuable in future studies aimed at examining DNAm differences in particular brain regions of rats exposed to environmental stimuli with potential epigenetic consequences.  相似文献   

5.
《Epigenetics》2013,8(11):1378-1390
Comprehensive High-throughput Arrays for Relative Methylation (CHARM) was recently developed as an experimental platform and analytic approach to assess DNA methylation (DNAm) at a genome-wide level. Its initial implementation was for human and mouse. We adapted it for rat and sought to examine DNAm differences across tissues and brain regions in this model organism. We extracted DNA from liver, spleen, and three brain regions: cortex, hippocampus, and hypothalamus from adult Sprague Dawley rats. DNA was digested with McrBC, and the resulting methyl-depleted fraction was hybridized to the rat CHARM array along with a mock-treated fraction. Differentially methylated regions (DMRs) between tissue types were detected using normalized methylation log-ratios. In validating 24 of the most significant DMRs by bisulfite pyrosequencing, we detected large mean differences in DNAm, ranging from 33-59%, among the most significant DMRs in the across-tissue comparisons. The comparable figures for the hippocampus vs. hypothalamus DMRs were 14-40%, for the cortex vs. hippocampus DMRs, 12-29%, and for the cortex vs. hypothalamus DMRs, 5-35%, with a correlation of r2 = 0.92 between the methylation differences in 24 DMRs predicted by CHARM and those validated by bisulfite pyrosequencing. Our adaptation of the CHARM array for the rat genome yielded highly robust results that demonstrate the value of this method in detecting substantial DNAm differences between tissues and across different brain regions. This platform should prove valuable in future studies aimed at examining DNAm differences in particular brain regions of rats exposed to environmental stimuli with potential epigenetic consequences.  相似文献   

6.
Chronic exposure to glucocorticoids (GCs) can lead to psychiatric complications through epigenetic mechanisms such as DNA methylation (DNAm). We sought to determine whether epigenetic changes in a peripheral tissue can serve as a surrogate for those in a relatively inaccessible tissue such as the brain. DNA extracted from the hippocampus and blood of mice treated with GCs or vehicle solution was assayed using a genome-wide DNAm platform (Methyl-Seq) to identify differentially methylated regions (DMRs) induced by GC treatment. We observed that ~70% of the DMRs in both tissues lost methylation following GC treatment. Of the 3,095 DMRs that mapped to the same genes in both tissues, 1,853 DMRs underwent DNAm changes in the same direction. Interestingly, only 209 DMRs (<7%) overlapped in genomic coordinates between the 2 tissues, suggesting tissue-specific differences in GC-targeted loci. Pathway analysis showed that the DMR-associated genes were members of pathways involved in metabolism, immune function, and neurodevelopment. Also, changes in cell type composition of blood and brain were examined by fluorescence-activated cell sorting. Separation of the cortex into neuronal and non-neuronal fractions and the leukocytes into T-cells, B-cells, and neutrophils showed that GC-induced methylation changes primarily occurred in neurons and T-cells, with the blood tissue also undergoing a shift in the proportion of constituent cell types while the proportion of neurons and glia in the brain remained stable. From the current pilot study, we found that despite tissue-specific epigenetic changes and cellular heterogeneity, blood can serve as a surrogate for GC-induced changes in the brain.  相似文献   

7.
Age structure is a fundamental aspect of animal population biology. Age is strongly related to individual physiological condition, reproductive potential and mortality rate. Currently, there are no robust molecular methods for age estimation in birds. Instead, individuals must be ringed as chicks to establish known‐age populations, which is a labour‐intensive and expensive process. The estimation of chronological age using DNA methylation (DNAm) is emerging as a robust approach in mammals including humans, mice and some non‐model species. Here, we quantified DNAm in whole blood samples from a total of 71 known‐age Short‐tailed shearwaters (Ardenna tenuirostris) using digital restriction enzyme analysis of methylation (DREAM). The DREAM method measures DNAm levels at thousands of CpG dinucleotides throughout the genome. We identified seven CpG sites with DNAm levels that correlated with age. A model based on these relationships estimated age with a mean difference of 2.8 years to known age, based on validation estimates from models created by repeated sampling of training and validation data subsets. Longitudinal observation of individuals re‐sampled over 1 or 2 years generally showed an increase in estimated age (6/7 cases). For the first time, we have shown that epigenetic changes with age can be detected in a wild bird. This approach should be of broad interest to researchers studying age biomarkers in non‐model species and will allow identification of markers that can be assessed using targeted techniques for accurate age estimation in large population studies.  相似文献   

8.
Folic acid (FA) supplementation may protect from obesity and insulin resistance, the effects and mechanism of FA on chronic high-fat-diet-induced obesity-related metabolic disorders are not well elucidated. We adopted a genome-wide approach to directly examine whether FA supplementation affects the DNA methylation profile of mouse adipose tissue and identify the functional consequences of these changes. Mice were fed a high-fat diet (HFD), normal diet (ND) or an HFD supplemented with folic acid (20 μg/ml in drinking water) for 10 weeks, epididymal fat was harvested, and genome-wide DNA methylation analyses were performed using methylated DNA immunoprecipitation sequencing (MeDIP-seq). Mice exposed to the HFD expanded their adipose mass, which was accompanied by a significant increase in circulating glucose and insulin levels. FA supplementation reduced the fat mass and serum glucose levels and improved insulin resistance in HFD-fed mice. MeDIP-seq revealed distribution of differentially methylated regions (DMRs) throughout the adipocyte genome, with more hypermethylated regions in HFD mice. Methylome profiling identified DMRs associated with 3787 annotated genes from HFD mice in response to FA supplementation. Pathway analyses showed novel DNA methylation changes in adipose genes associated with insulin secretion, pancreatic secretion and type 2 diabetes. The differential DNA methylation corresponded to changes in the adipose tissue gene expression of Adcy3 and Rapgef4 in mice exposed to a diet containing FA. FA supplementation improved insulin resistance, decreased the fat mass, and induced DNA methylation and gene expression changes in genes associated with obesity and insulin secretion in obese mice fed a HFD.  相似文献   

9.
Mammalian imprinted genes are associated with differentially methylated regions (DMRs) that are CpG methylated on one of the two parental chromosomes. In mice, at least 21 DMRs acquire differential methylation in the germline and many of them act as imprint centres. We previously reported the physical extents of differential methylation at 15 DMRs in mouse embryos at 12.5 days postcoitum. To reveal the ontogeny of differential methylation, we determined and compared methylation patterns of the corresponding regions in sperm and oocytes. We found that the extent of the gametic DMRs differs significantly from that of the embryonic DMRs, especially in the case of paternal gametic DMRs. These results suggest that the gametic DMR sequences should be used to extract the features specifying methylation imprint establishment in the germline: from this analysis, we noted that the maternal gametic DMRs appear as unmethylated islands in male germ cells, which suggests a novel component in the mechanism of gamete-specific marking. Analysis of selected DMRs in blastocysts revealed dynamic changes in allelic methylation in early development, indicating that DMRs are not fully protected from the major epigenetic reprogramming events occurring during preimplantation development. Furthermore, we observed non-CpG methylation in oocytes, but not in sperm, which disappeared by the blastocyst stage. Non-CpG methylation was frequently found at maternally methylated DMRs as well as non-DMR regions, suggesting its prevalence in the oocyte genome. These results provide evidence for a unique methylation profile in oocytes and reveal the surprisingly dynamic nature of DMRs in the early embryo.  相似文献   

10.
Bloom syndrome (BSyn) is an autosomal recessive disorder caused by variants in the BLM gene, which is involved in genome stability. Patients with BSyn present with poor growth, sun sensitivity, mild immunodeficiency, diabetes, and increased risk of cancer, most commonly leukemias. Interestingly, patients with BSyn do not have other signs of premature aging such as early, progressive hair loss and cataracts. We set out to determine epigenetic age in BSyn, which can be a better predictor of health and disease over chronological age. Our results show for the first time that patients with BSyn have evidence of accelerated epigenetic aging across several measures in blood lymphocytes, as compared to carriers. Additionally, homozygous Blm mice exhibit accelerated methylation age in multiple tissues, including brain, blood, kidney, heart, and skin, according to the brain methylation clock. Overall, we find that Bloom syndrome is associated with accelerated epigenetic aging effects in multiple tissues and more generally a strong effect on CpG methylation levels.  相似文献   

11.
Aging is associated with highly reproducible DNA methylation (DNAm) changes, which may contribute to higher prevalence of malignant diseases in the elderly. In this study, we analyzed epigenetic aging signatures in 5,621 DNAm profiles of 25 cancer types from The Cancer Genome Atlas (TCGA). Overall, age-associated DNAm patterns hardly reflect chronological age of cancer patients, but they are coherently modified in a non-stochastic manner, particularly at CpGs that become hypermethylated upon aging in non-malignant tissues. This coordinated regulation in epigenetic aging signatures can therefore be used for aberrant epigenetic age-predictions, which facilitate disease stratification. For example, in acute myeloid leukemia (AML) higher epigenetic age-predictions are associated with increased incidence of mutations in RUNX1, WT1, and IDH2, whereas mutations in TET2, TP53, and PML-PARA translocation are more frequent in younger age-predictions. Furthermore, epigenetic aging signatures correlate with overall survival in several types of cancer (such as lower grade glioma, glioblastoma multiforme, esophageal carcinoma, chromophobe renal cell carcinoma, cutaneous melanoma, lung squamous cell carcinoma, and neuroendocrine neoplasms). In conclusion, age-associated DNAm patterns in cancer are not related to chronological age of the patient, but they are coordinately regulated, particularly at CpGs that become hypermethylated in normal aging. Furthermore, the apparent epigenetic age-predictions correlate with clinical parameters and overall survival in several types of cancer, indicating that regulation of DNAm patterns in age-associated CpGs is relevant for cancer development.  相似文献   

12.
The process of aging results in a host of changes at the cellular and molecular levels, which include senescence, telomere shortening, and changes in gene expression. Epigenetic patterns also change over the lifespan, suggesting that epigenetic changes may constitute an important component of the aging process. The epigenetic mark that has been most highly studied is DNA methylation, the presence of methyl groups at CpG dinucleotides. These dinucleotides are often located near gene promoters and associate with gene expression levels. Early studies indicated that global levels of DNA methylation increase over the first few years of life and then decrease beginning in late adulthood. Recently, with the advent of microarray and next‐generation sequencing technologies, increases in variability of DNA methylation with age have been observed, and a number of site‐specific patterns have been identified. It has also been shown that certain CpG sites are highly associated with age, to the extent that prediction models using a small number of these sites can accurately predict the chronological age of the donor. Together, these observations point to the existence of two phenomena that both contribute to age‐related DNA methylation changes: epigenetic drift and the epigenetic clock. In this review, we focus on healthy human aging throughout the lifetime and discuss the dynamics of DNA methylation as well as how interactions between the genome, environment, and the epigenome influence aging rates. We also discuss the impact of determining ‘epigenetic age’ for human health and outline some important caveats to existing and future studies.  相似文献   

13.
An epigenetic profile defining the DNA methylation age (DNAm age) of an individual has been suggested to be a biomarker of aging, and thus possibly providing a tool for assessment of health and mortality. In this study, we estimated the DNAm age of 378 Danish twins, age 30–82 years, and furthermore included a 10‐year longitudinal study of the 86 oldest‐old twins (mean age of 86.1 at follow‐up), which subsequently were followed for mortality for 8 years. We found that the DNAm age is highly correlated with chronological age across all age groups (r = 0.97), but that the rate of change of DNAm age decreases with age. The results may in part be explained by selective mortality of those with a high DNAm age. This hypothesis was supported by a classical survival analysis showing a 35% (4–77%) increased mortality risk for each 5‐year increase in the DNAm age vs. chronological age. Furthermore, the intrapair twin analysis revealed a more‐than‐double mortality risk for the DNAm oldest twin compared to the co‐twin and a ‘dose–response pattern’ with the odds of dying first increasing 3.2 (1.05–10.1) times per 5‐year DNAm age difference within twin pairs, thus showing a stronger association of DNAm age with mortality in the oldest‐old when controlling for familial factors. In conclusion, our results support that DNAm age qualifies as a biomarker of aging.  相似文献   

14.
The mechanism of aging is not yet fully understood. It has been recognized that there are age-dependent changes in the DNA methylation pattern of the whole genome. To date, there are several DNA methylation-based estimators of the chronological age. A majority of the estimators use the DNA methylation data from a single tissue type, such as blood. In 2013, for the first time, Steve Horvath reported the DNA methylation-based age estimator (353 CpGs were used) that could be applied to multiple tissues. A refined, more sensitive version that uses 391 CpGs was subsequently developed and validated in human cells, including fibroblasts. In this review, the age predicted by DNA methylation-based age estimator is referred to as DNAmAge, and the biological process controlling the progression of DNAmAge is referred to as the epigenetic aging in this minireview. The concepts of DNAmAge and epigenetic aging provide us opportunities to discover previously unrecognized biological events controlling aging. In this article, we discuss the frequently asked questions regarding DNAmAge and the epigenetic aging by introducing recent studies of ours and others. We focus on addressing the following questions: (1) Is there any synchronization of DNAmAge between cells in a human body?, (2) Can we use in vitro (cell culture) systems to study the epigenetic aging?, (3) Is there an age limit of DNAmAge?, and (4) Is it possible to change the speed and direction of the epigenetic aging? We describe our current understandings to these questions and outline potential future directions.Impact statementAging is associated with DNA methylation (DNAm) changes. Recent advancement of the whole-genome DNAm analysis technology allowed scientists to develop DNAm-based age estimators. A majority of these estimators use DNAm data from a single tissue type such as blood. In 2013, a multi-tissue age estimator using DNAm pattern of 353 CpGs was developed by Steve Horvath. This estimator was named “epigenetic clock”, and the improved version using DNAm pattern of 391 CpGs was developed in 2018. The estimated age by epigenetic clock is named DNAmAge. DNAmAge can be used as a biomarker of aging predicting the risk of age-associated diseases and mortality. Although the DNAm-based age estimators were developed, the mechanism of epigenetic aging is still enigmatic. The biological significance of epigenetic aging is not well understood, either. This minireview discusses the current understanding of the mechanism of epigenetic aging and the future direction of aging research.  相似文献   

15.
Aging is characterized by numerous molecular changes, such as accumulation of molecular damage and altered gene expression, many of which are linked to DNA methylation. Here, we characterize the blood DNA methylome across 16 age groups of mice and report numerous global, region‐ and site‐specific features, as well as the associated dynamics of methylation changes. Transition of the methylome throughout lifespan was not uniform, with many sites showing accelerated changes in late life. The associated genes and promoters were enriched for aging‐related pathways, pointing to a fundamental link between DNA methylation and control of the aging process. Calorie restriction both shifted the overall methylation pattern and was accompanied by its gradual age‐related remodeling, the latter contributing to the lifespan‐extending effect. With age, both highly and poorly methylated sites trended toward intermediate levels, and aging was accompanied by an accelerated increase in entropy, consistent with damage accumulation. However, the entropy effects differed for the sites that increased, decreased and did not change methylation with age. Many sites trailed behind, whereas some followed or even exceeded the entropy trajectory and altered the developmental DNA methylation pattern. The patterns we observed in certain genomic regions were conserved between humans and mice, suggesting common principles of functional DNA methylome remodeling and its critical role in aging. The highly resolved DNA methylome remodeling provides an excellent model for understanding systemic changes that characterize the aging process.  相似文献   

16.
DNA methylation (DNAm) is an important epigenetic process involved in the regulation of gene expression. While many studies have identified thousands of loci associated with age, few have differentiated between linear and non-linear DNAm trends with age. Non-linear trends could indicate early- or late-life gene regulatory processes. Using data from the Illumina 450K array on 336 human peripheral blood samples, we identified 21 CpG sites that associated with age (P<1.03E-7) and exhibited changing rates of DNAm change with age (P<1.94E-6). For 2 of these CpG sites (cg07955995 and cg22285878), DNAm increased with age at an increasing rate, indicating that differential DNAm was greatest among elderly individuals. We observed significant replication for both CpG sites (P<5.0E-8) in a second set of peripheral blood samples. In 8 of 9 additional data sets comprising samples of monocytes, T cell subtypes, and brain tissue, we observed a pattern directionally consistent with DNAm increasing with age at an increasing rate, which was nominally significant in the 3 largest data sets (4.3E-15<P<0.039). cg07955995 and cg22285878 reside in the promoter region of KLF14, which encodes a protein involved in immune cell differentiation via the repression of FOXP3. These findings may suggest a possible role for cg07955995 and cg22285878 in immunosenescence.  相似文献   

17.
DNA methylation plays major roles in many biological processes, including aging, carcinogenesis, and development. Analyses of DNA methylation using next‐generation sequencing offer a new way to profile and compare methylomes across the genome in the context of aging. We explored genomewide DNA methylation and the effects of short‐term calorie restriction (CR) on the methylome of aged rat kidney. Whole‐genome methylation of kidney in young (6 months old), old (25 months old), and OCR (old with 4‐week, short‐term CR) rats was analyzed by methylated DNA immunoprecipitation and next‐generation sequencing (MeDIP‐Seq). CpG islands and repetitive regions were hypomethylated, but 5′‐UTR, exon, and 3′‐UTR hypermethylated in old and OCR rats. The methylation in the promoter and intron regions was decreased in old rats, but increased in OCR rats. Pathway enrichment analysis showed that the hypermethylated promoters in old rats were associated with degenerative phenotypes such as cancer and diabetes. The hypomethylated promoters in old rats related significantly to the chemokine signaling pathway. However, the pathways significantly enriched in old rats were not observed from the differentially methylated promoters in OCR rats. Thus, these findings suggest that short‐term CR could partially ameliorate age‐related methylation changes in promoters in old rats. From the epigenomic data, we propose that the hypermethylation found in the promoter regions of disease‐related genes during aging may indicate increases in susceptibility to age‐related diseases. Therefore, the CR‐induced epigenetic changes that ameliorate age‐dependent aberrant methylation may be important to CR's health‐ and life‐prolonging effects.  相似文献   

18.
Reduced representation bisulfite sequencing (RRBS) was used to analyze DNA methylation patterns across the mouse brain genome in mice carrying a deletion of the Prader-Willi syndrome imprinting center (PWS-IC) on either the maternally- or paternally-inherited chromosome. Within the ∼3.7 Mb imprinted Angelman/Prader-Willi syndrome (AS/PWS) domain, 254 CpG sites were interrogated for changes in methylation due to PWS-IC deletion. Paternally-inherited deletion of the PWS-IC increased methylation levels ∼2-fold at each CpG site (compared to wild-type controls) at differentially methylated regions (DMRs) associated with 5′ CpG island promoters of paternally-expressed genes; these methylation changes extended, to a variable degree, into the adjacent CpG island shores. Maternal PWS-IC deletion yielded little or no changes in methylation at these DMRs, and methylation of CpG sites outside of promoter DMRs also was unchanged upon maternal or paternal PWS-IC deletion. Using stringent ascertainment criteria, ∼750,000 additional CpG sites were also interrogated across the entire mouse genome. This analysis identified 26 loci outside of the imprinted AS/PWS domain showing altered DNA methylation levels of ≥25% upon PWS-IC deletion. Curiously, altered methylation at 9 of these loci was a consequence of maternal PWS-IC deletion (maternal PWS-IC deletion by itself is not known to be associated with a phenotype in either humans or mice), and 10 of these loci exhibited the same changes in methylation irrespective of the parental origin of the PWS-IC deletion. These results suggest that the PWS-IC may affect DNA methylation at these loci by directly interacting with them, or may affect methylation at these loci through indirect downstream effects due to PWS-IC deletion. They further suggest the PWS-IC may have a previously uncharacterized function outside of the imprinted AS/PWS domain.  相似文献   

19.
《Epigenetics》2013,8(11):1540-1556
Reduced representation bisulfite sequencing (RRBS) was used to analyze DNA methylation patterns across the mouse brain genome in mice carrying a deletion of the Prader-Willi syndrome imprinting center (PWS-IC) on either the maternally- or paternally-inherited chromosome. Within the ~3.7 Mb imprinted Angelman/Prader-Willi syndrome (AS/PWS) domain, 254 CpG sites were interrogated for changes in methylation due to PWS-IC deletion. Paternally-inherited deletion of the PWS-IC increased methylation levels ~2-fold at each CpG site (compared to wild-type controls) at differentially methylated regions (DMRs) associated with 5′ CpG island promoters of paternally-expressed genes; these methylation changes extended, to a variable degree, into the adjacent CpG island shores. Maternal PWS-IC deletion yielded little or no changes in methylation at these DMRs, and methylation of CpG sites outside of promoter DMRs also was unchanged upon maternal or paternal PWS-IC deletion. Using stringent ascertainment criteria, ~750,000 additional CpG sites were also interrogated across the entire mouse genome. This analysis identified 26 loci outside of the imprinted AS/PWS domain showing altered DNA methylation levels of ≥25% upon PWS-IC deletion. Curiously, altered methylation at 9 of these loci was a consequence of maternal PWS-IC deletion (maternal PWS-IC deletion by itself is not known to be associated with a phenotype in either humans or mice), and 10 of these loci exhibited the same changes in methylation irrespective of the parental origin of the PWS-IC deletion. These results suggest that the PWS-IC may affect DNA methylation at these loci by directly interacting with them, or may affect methylation at these loci through indirect downstream effects due to PWS-IC deletion. They further suggest the PWS-IC may have a previously uncharacterized function outside of the imprinted AS/PWS domain.  相似文献   

20.
Growth hormone (GH) signaling stimulates the production of IGF‐1; however, increased GH signaling may induce insulin resistance and can reduce life expectancy in both mice and humans. Interestingly, disruption of GH signaling by reducing plasma GH levels significantly improves health span and extends lifespan in mice, as observed in Ames dwarf mice. In addition, these mice have increased adiposity, yet are more insulin sensitive compared to control mice. Metabolic stressors such as high‐fat diet (HFD) promote obesity and may alter longevity through the GH signaling pathway. Therefore, our objective was to investigate the effects of a HFD (metabolic stressor) on genetic mechanisms that regulate metabolism during aging. We show that Ames dwarf mice fed HFD for 12 weeks had an increase in subcutaneous and visceral adiposity as a result of diet‐induced obesity, yet are more insulin sensitive and have higher levels of adiponectin compared to control mice fed HFD. Furthermore, energy expenditure was higher in Ames dwarf mice fed HFD than in control mice fed HFD. Additionally, we show that transplant of epididymal white adipose tissue (eWAT) from Ames dwarf mice fed HFD into control mice fed HFD improves their insulin sensitivity. We conclude that Ames dwarf mice are resistant to the detrimental metabolic effects of HFD and that visceral adipose tissue of Ames dwarf mice improves insulin sensitivity in control mice fed HFD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号