首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The number of tentacles per unit of body volume decreases with increasing body size in the Bryozoa. The ranges of zooid sizes and of tentacle numbers of the Phylactolaemata do considerably overlap with those of the Gymnolaemata s. l., but only the phylactolaemes form horseshoe-shaped lophophores. Therefore, the lophophore form in the Bryozoa does not simply depend on body sizes but on differences in the genomes in the two sub-classes. A lining-in of similar or similar seeming external shapes of zooids has no persuasive power unless it is combined with convincing arguments concerning the accompanying emendations of the internal anatomy. Economizations and attained degrees of functional effectivity provide main guide-lines for the argumentation and for testing the probability of discussed cases of evolutionary branching during attempts to reconstruct alterations of the internal anatomy. Recapitulative arrangements may play an important role in this context. Statistics on “phens” cannot help to solve these problems. Comparison of the forms of the body bending, of the modes of ontogenetioal displacement of the polypide, and of the arrangements of the body musculature in combination supports the interpretation that the Stenostomata and the Eurystomata have a common root with primarily erect, uncalcified forms and thus most probably are a monophyletic group of Gymnolaemata s. l. originating in phylactolaeme like ancestors. Omitting the Phylactolaemata (as a linking group with many plesiomorph features) in attempts to reconstruct the bryozoan evolution drastically increases the amount of morphological differences between the Gymnolaemata s. l. and the Phoronidae, which are commonly accepted to have pre-served the most morphological characteristics of the bryozoan ancestors. It must be warned of an overestimation of the possible role of the fossil record for the reconstruction of the bryozoan phylogeny, which strongly demands the aids by investigations also on Recent species.  相似文献   

2.
Bryozoans are aquatic invertebrates that inhabit all types of aquatic ecosystems. They are small animals that form large colonies by asexual budding. Colonies can reach the size of several tens of centimeters, while individual units within a colony are the size of a few millimeters. Each individual within a colony works as a separate zooid and is genetically identical to each other individual within the same colony. Most freshwater species of bryozoans belong to the Phylactolaemata class, while several species that tolerate brackish water belong to the Gymnolaemata class. Tissue samples for this study were collected in the rivers of Adriatic and Danube basin and in the wetland areas in the continental part of Croatia (Europe). Freshwater and brackish taxons of bryozoans were genetically analyzed for the purpose of creating phylogenetic relationships between freshwater and brackish taxons of the Phylactolaemata and Gymnolaemata classes and determining the role of brackish species in colonizing freshwater and marine ecosystems. Phylogenetic relationships inferred on the genes for 18S rRNA, 28S rRNA, COI, and ITS2 region confirmed Phylactolaemata bryozoans as radix bryozoan group. Phylogenetic analysis proved Phylactolaemata bryozoan's close relations with taxons from Phoronida phylum as well as the separation of the Lophopodidae family from other families within the Plumatellida genus. Comparative analysis of existing knowledge about the phylogeny of bryozoans and the expansion of known evolutionary hypotheses is proposed with the model of settlement of marine and freshwater ecosystems by the bryozoans group during their evolutionary past. In this case study, brackish bryozoan taxons represent a link for this ecological phylogenetic hypothesis. Comparison of brackish bryozoan species Lophopus crystallinus and Conopeum seurati confirmed a dual colonization of freshwater ecosystems throughout evolution of this group of animals.  相似文献   

3.
《Journal of morphology》2017,278(5):718-733
Tentacles are the main food‐gathering organs of bryozoans. The most common design is a hollow tube of extracellular matrix (ECM), covered with ten columns of epithelial cells on the outside, and a coelothelium on the inside. Nerves follow the ECM, going between the bases of some epidermal cells. The tentacle musculature includes two bundles formed by myoepithelial cells of the coelothelium. The tentacles of freshwater (phylactolaemate) bryozoans, however, differ somewhat in structure from those of marine bryozoans. Here, we describe the tentacles of three species of phylactolaemates, comparing them to gymnolaemates and stenolaemates. Phylactolaemate tentacles tend to be longer, and with more voluminous coeloms. The composition of the frontal cell row and the number of frontal nerves is variable in freshwater bryozoans, but constant in marine groups. Abfrontal cells form a continuous row in Phylactolaemata, but occur intermittently in other two classes. Phylactolaemata lack the microvillar cuticle reported in Gymnolaemata. Abfrontal sensory tufts are always composed of pairs of mono‐ and/or biciliated cells. This arrangement differs from individual abfrontal ciliary cells of other bryozoans: monociliated in Stenolaemata and monociliated and multiciliated ones in Gymnolaemata. In all three groups, however, ciliated abfrontal cells probably serve as mechanoreceptors. We confirm previously described phylactolemate traits: an unusual arrangement of two‐layered coelothelium lining the lateral sides of the tentacle and oral slits in the intertentacular membrane. As previously reported, tentacle movements involved in feeding differ between bryozoan groups, with phylactolaemates tending to have slower movements than both gymnolaemates and stenolaemates, and a narrower behavioral repertoire than gymnolaemates. The morphological and ultrastructural differences between the freshwater species we studied and marine bryozoans may be related to these functional differences. Muscle organization, tentacle and coelom size, and degree of confluence between tentacle and lophophore coeloms probably account for much of the observed behavioral variability.  相似文献   

4.
Morphological features of a distinctive group of Post-Paleozoic bryozoans belonging to the order Melicerititida (Stenolaemata) are discussed. They include funnel-shaped zooecia, facettes, semicircular zooecial apertures with a straight proximal edge, calcified opercula, and various types of vicarious eleozooecia, which resemble avicularia of cheilostome bryozoans. These morphological structures are unique within the class Stenolaemata. They not only differentiate these bryozoans both morphologically and evolutionarily from Cyclostomata, in which some authors place them, but also from all the other orders of this class.  相似文献   

5.

Introduction

Among bryozoans, cyclostome anatomy is the least studied by modern methods. New data on the nervous system fill the gap in our knowledge and make morphological analysis much more fruitful to resolve some questions of bryozoan evolution and phylogeny.

Results

The nervous system of cyclostome Crisia eburnea was studied by transmission electron microscopy and confocal laser scanning microscopy. The cerebral ganglion has an upper concavity and a small inner cavity filled with cilia and microvilli, thus exhibiting features of neuroepithelium. The cerebral ganglion is associated with the circumoral nerve ring, the circumpharyngeal nerve ring, and the outer nerve ring. Each tentacle has six longitudinal neurite bundles. The body wall is innervated by thick paired longitudinal nerves. Circular nerves are associated with atrial sphincter. A membranous sac, cardia, and caecum all have nervous plexus.

Conclusion

The nervous system of the cyclostome C. eburnea combines phylactolaemate and gymnolaemate features. Innervation of tentacles by six neurite bundles is similar of that in Phylactolaemata. The presence of circumpharyngeal nerve ring and outer nerve ring is characteristic of both, Cyclostomata and Gymnolaemata. The structure of the cerebral ganglion may be regarded as a result of transformation of hypothetical ancestral neuroepithelium. Primitive cerebral ganglion and combination of nerve plexus and cords in the nervous system of C. eburnea allows to suggest that the nerve system topography of C. eburnea may represent an ancestral state of nervous system organization in Bryozoa. Several scenarios describing evolution of the cerebral ganglion in different bryozoan groups are proposed.
  相似文献   

6.
The Stenolaemata comprise both basically single-walled forms (Cyclostomata) and doublewalled forms (Trepostomata, Cystoporata and Cryptostomata) from their first appearance in the geological record. At the end of the Palaeozoic the main groups of apparently double-walled stenolaemates died out, and only the single-walled cyclostomates survived. During the Mesozoic, evolution within the Stenolaemata was apparently repeated by the further development of double-walled forms such as cerioporids, lichenoporids and cancelloids, from single-walled ancestors. These double-walled groups are all remarkable homeomorphs of the major Palaeozoic groups of Bryozoa. A monophyletic origin of the post-Palaeozoic Cyclostomata from Palaeozoic single-walled forms is thus suggested.  相似文献   

7.
Anstey, Robert L. 1981 12 15: Zooid orientation structures and water flow patterns in Paleozoic bryotoan colonies. Lethaia . vol. 14, pp. 287–302. Oslo. ISSN 0024–1164.
By means of direct physical evidence provided by zooecial orientation structures, active water flow systems in Paleozoic bryozoans are inferred to be variously centripetal, centrifugal, or basipetal. Monticules, previously assessed as excurrent water outlets, fall into three additional functional types: incurrent, bypassed, and funnel. In one species circular zoarial fenestrations served as excurrent water outlets. Water flow patterns are strongly correlated with zoarial growth form, which vanes in a general way with inferred habitat conditions in ancient environments. Monticular astogeny and phylogeny include a graded series of sizes, types, and functions. Analogy with zooidal polarities in extant stenolaemates suggests that colony bases and centripetal monticules in the Paleozoic orders were anally budded, but that erect branches and centrifugal monticules were orally budded, a character shared only by the freshwater Phylactolaemata. * Bryozoa, Stenolaemata, functional morphology, monticule function, hydrodynamics, feeding currents, Palaeozoic .  相似文献   

8.
9.
10.
11.
苔藓动物18S rRNA基因的分子系统发生初探   总被引:4,自引:0,他引:4  
本文对我国沿海较为常见的8种唇口目苔藓动物的18SrRNA基因进行了PCR扩增和序列测定。结合已知的其它苔藓动物(包括内肛动物和外肛动物)以及腕足动物和帚虫的相应序列,运用分子系统学方法,研究苔藓动物门的系统发生关系,结果表明,外肛动物和内肛动物构成苔藓动物分子系统树中的二大平行支;本文测定的大室膜孔苔虫与Giribet等测定的膜孔苔虫在系统树中的位置间隔较远。结果也支持外肛动物包含被唇纲和裸唇纲两大类群的形态划分,而关于裸唇纲特别是唇口目内部的系统发生关系。分子数据的分析结果和形态分类之间的分歧有待于进一步研究。  相似文献   

12.
Although only a small fraction of the estimated 6000 extant bryozoan species has been analysed in a molecular phylogenetic context, the resultant trees have increased our understanding of the interrelationships between major bryozoan groups, as well as between bryozoans and other metazoan phyla. Molecular systematic analyses have failed to recover the Lophophorata as a monophyletic clade until recently, when phylogenomic data placed the Brachiopoda as sister to a clade formed by Phoronida + Bryozoa. Among bryozoans, class Phylactolaemata has been shown to be the sister group of Gymnolaemata + Stenolaemata, corroborating earlier anatomical inferences. Despite persistent claims, there are no unequivocal bryozoans of Cambrian age: the oldest bryozoans are stenolaemates from the Tremadocian of China. Stenolaemates underwent a major radiation during the Ordovician, but the relationships between the six orders involved are poorly understood, mostly because the simple and plastic skeletons of stenolaemates make phylogenetic analyses difficult. Bryozoans were hard‐hit by the mass extinction/s in the late Permian and it was not until the Middle Jurassic that they began to rediversify, initially through the cyclostome stenolaemates. The most successful post‐Palaeozoic order (Cheilostomata) evolved a calcareous skeleton de novo from a soft‐bodied ancestor in the Late Jurassic, maintained a low diversity until the mid‐Cretaceous and then began to radiate explosively. A remarkable range of morphological structures in the form of highly modified zooidal polymorphs, or non‐zooidal or intrazooidal modular elements, is postulated to have evolved repeatedly in this group. Crucially, many of these structures have been linked to micropredator protection and can be interpreted as key traits linked to the diversification of cheilostomes.  相似文献   

13.
We present the most comprehensive molecular phylogeny of bryozoans to date. Our concatenated alignment of two nuclear ribosomal and five mitochondrial genes includes 95 taxa and 13,292 nucleotide sites, of which 8297 were included. The number of new sequences generated during this project are for each gene:ssrDNA (32), lsrDNA (22), rrnL (38), rrnS (35), cox1 (37), cox3 (34), and cytb (44). Our multi-gene analysis provides a largely stable topology across the phylum. The major groups were unambiguously resolved as (Phylactolaemata (Cyclostomata (Ctenostomata, Cheilostomata))), with Ctenostomata paraphyletic. Within Phylactolaemata, (Stephanellidae, Lophopodidae) form the earliest divergent clade. Fredericellidae is not resolved as a monophyletic family and forms a clade together with Plumatellidae, Cristatellidae and Pectinatellidae, with the latter two as sister taxa. Hyalinella and Gelatinella nest within the genus Plumatella. Cyclostome taxa fall into three major clades: i. (Favosipora (Plagioecia, Rectangulata)); ii. (Entalophoroecia ((Diplosolen, Cardioecia) (Frondipora, Cancellata))); and iii. (Articulata ((Annectocyma, Heteroporidae) (Tubulipora (Tennysonia, Idmidronea)))), with suborders Tubuliporina and Cerioporina, and family Plagioeciidae each being polyphyletic. Ctenostomata is composed of three paraphyletic clades to the inclusion of Cheilostomata: ((Alcyonidium, Flustrellidra) (Paludicella (Anguinella, Triticella)) (Hislopia (Bowerbankia, Amathia)) Cheilostomata); Flustrellidra nests within the genus Alcyonidium, and Amathia nests within the genus Bowerbankia. Suborders Carnosa and Stolonifera are not monophyletic. Within the cheilostomes, Malacostega is paraphyletic to the inclusion of all other cheilostomes. Conopeum is the most early divergent cheilostome, forming the sister group to ((Malacostega, Scrupariina, Inovicellina) ((Hippothoomorpha, Flustrina) (Lepraliomorpha, Umbonulomorpha))); Flustrina is paraphyletic to the inclusion of the hippothoomorphs; neither Lepraliomorpha nor Umbonulomorpha is monophyletic. Ascophorans are polyphyletic, with hippothoomorphs grouping separately from lepraliomorphs and umbonulomorphs; no cribrimorphs were included in the analysis. Results are discussed in the light of molecular and morphological evidence. Ancestral state reconstruction of larval strategy in Gymnolaemata revealed planktotrophy and lecithotrophy as equally parsimonious solutions for the ancestral condition. More comprehensive taxon sampling is expected to clarify this result. We discuss the extent of non-bryozoan contaminant sequences deposited in GenBank and their impact on the reconstruction of metazoan phylogenies and those of bryozoan interrelationships.  相似文献   

14.
The radiation of the Jurassic bryozoans of the class Stenolaemata, which started in seas of the Bajocian and Bathonian of western Europe, is shown to be continued in basins of eastern Europe during the extensive Middle Callovian transgression. The taxonomic composition of stenolaemate bryozoans from the Jurassic of central European Russia and main features of their colonial morphology are discussed.  相似文献   

15.
苔藓动物是后生动物中的一个重要类群。然而,和其它主要后生动物类群相比,长期以来对它的系统学研究却相对滞后。其起源,系统发生地位以及与其它后生物门类之间、其内部各高级分类群间的谱系发生关系一直存在争议。一般认为它是介于原口动物和后口动物之间的过渡类群。但是,近年来的分子系统学研究已经证实了它的原口归属。古生物学资料表明,虽然苔藓动物的大多数类群在奥陶纪已经分化出来,但它在寒武纪却缺乏任何化石记录。另外,苔藓动物起源的时间和方式、其内部各类群间的系统发生关系特别是现生类群和化石类群之间的关系等诸多问题的解决,还有待于大量的形态学和不同的分子数据的进一步积累,并结合其地层分布等各种相关资料进行综合研究。  相似文献   

16.
苔藓动物是一类多为海生、滤食性的群体生物。奥陶纪是苔藓动物发生、演化辐射和灭绝的重要时期,也是苔虫礁形成的最早时期。已知最老的化石苔藓动物发现于中国特马豆克晚期。构成苔藓动物基本分类框架的狭唇纲(包括变口目、隐口目、泡孔目和管孔目)和宽唇纲(包括窗孔目和栉口目)也都是在奥陶纪时期逐步形成的,其中,变口目出现于特马豆克期Tr2时间段,在弗洛期和大坪期,多样性较低,但从达瑞威尔期开始,经桑比期至凯迪期,多样性不断增高,并出现辐射。隐口目(特别是"双叶类隐口目苔虫")也经历了与变口目相类似的发展过程,但它首次出现的时间要相对略迟于变口目。这两个目在整个奥陶纪苔藓动物群中一直占据主导地位。泡孔目、管孔目和窗孔目,先后首次出现在弗洛期Fl2时间段、大坪期Dp1和Dp2时间段,但它们在整个奥陶纪期间一直处于低多样性态势。至于栉口目,它首次出现的时间可能更迟,在凯迪期Ka4时间段,犹如昙花一现。苔藓动物的演化在接近奥陶纪末时呈两幕式灭绝,一次发生在凯迪期Ka2时间段(可能相当于塔凯和安斯蒂的"拉夫塞伊灭绝"),另一次发生在赫南特期Hi2时间段(可能相当于塔凯和安斯蒂的"赫南特灭绝")。分子生物学和形态学证据表明,苔藓动物属原口动物,而不是以前长期认为的后口动物,或介于原口动物和后口动物之间的过渡类型;而且,苔藓动物与腕足动物、帚形动物之间没有直接的亲缘关系。苔藓动物可能起源于一种叫原内肛动物的生物,它们的目一级分类单元之间的系统发育关系目前尚未形成共识,本文绘制的谱系图还有待于化石记录的不断补充和分子生物学研究的逐步介入以使其日趋完善。  相似文献   

17.
Some peculiarities in the behavioral reactions of the lophophore, a feeding apparatus of the living marine bryozoans, are discussed. In bryozoans of the class Stenolaemata the position of the lophophore is regulated by the autozooidal peristome. In post-Paleozoic Stenolaemata the individual and collective activities of the lophophores are determined by the peculiarities in the trophic structuring of colonies, which are established based on the individual or group arrangement of autozooidal apertures. Two main types of the trophic structuring are distinguished: individual and group structuring. The adaptive significance of the trophic structuring consists in the effective extracting of food particles from water currents. In combination with the peculiarities of the colonial organization of post-Paleozoic Stenolaemata, the types of trophic structuring of colonies can be used when characterizing taxa of different levels.  相似文献   

18.
The principal features of the morphogenesis in the individual and historical development of marine post-Paleozoic bryozoans of the order Tubuliporida (=Cyclostomata, part.) are discussed. Throughout their history (Ordovician–Recent), Tubuliporida retained the morphological type of the tubu-lar zooid with a terminal aperture. This may suggest similarities not only between the zooidal anatomy of fossil and living Tubuliporida but also between the ontogenetic processes in their ancestrulae and zooids and similarities in astogeny in general. After the two types of reproduction, sexual and vegetative, which lead to the formation of new colonies that could only grow by budding, had been developed, the develop-ment of different types of colonial organization was of special importance in the evolution of the post-Pale-ozoic Tubuliporida.  相似文献   

19.
Based on morphological evidence, Bryozoa together with Phoronida and Brachiopoda are traditionally combined in the group Lophophorata, although this view has been recently challenged by molecular studies. The core of the concept lies in the presence of the lophophore as well as the nature and arrangement of the body cavities. Bryozoa are the least known in this respect. Here, we focused on the fine structure of the body cavity in 12 bryozoan species: 6 gymnolaemates, 3 stenolaemates and 3 phylactolaemates. In gymnolaemates, the complete epithelial lining of the body cavity is restricted to the lophophore, gut walls, and tentacle sheath. By contrast, the cystid walls are composed only of the ectocyst-producing epidermis without a coelothelium, or an underlying extracellular matrix; only the storage cells and cells of the funicular system contact the epidermis. The nature of the main body cavity in gymnolaemates is unique and may be considered as a secondarily modified coelom. In cyclostomes, both the lophophoral and endosaccal cavities are completely lined with coelothelium, while the exosaccal cavity only has the epidermis along the cystid wall. In gymnolaemates, the lophophore and trunk cavities are divided by an incomplete septum and communicate through two pores. In cyclostomes, the septum has a similar location, but no openings. In Phylactolaemata, the body cavity is undivided: the lophophore and trunk coeloms merge at the bases of the lophophore arms, the epistome cavity joins the trunk, and the forked canal opens into the arm coelom. The coelomic lining of the body is complete except for the epistome, lophophoral arms, and the basal portions of the tentacles, where the cells do not interlock perfectly (this design probably facilitates the ammonia excretion). The observed partitioning of the body cavity in bryozoans differs from that in phoronids and brachiopods, and contradicts the Lophophorata concept.  相似文献   

20.
Sun M  Shen X  Liu H  Liu X  Wu Z  Liu B 《Marine Genomics》2011,4(3):159-165
Mitochondrial genomes play a significant role in the reconstruction of phylogenetic relationships within metazoans. There are still many controversies concerning the phylogenetic position of the phylum Bryozoa. In this research, we have finished the complete mitochondrial genome of one bryozoan (Tubulipora flabellaris), which is the first representative from the class Stenolaemata. The complete mitochondrial genome of T. flabellaris is 13,763 bp in length and contains 36 genes, which lacks the atp8 gene in contrast to the typical metazoan mitochondrial genomes. Gene arrangement comparisons indicate that the mitochondrial genome of T. flabellaris has unique gene order when compared with other metazoans. The four known bryozoans complete mitochondrial genomes also have very different gene arrangements, indicates that bryozoan mitochondrial genomes have experienced drastic rearrangements. To investigate the phylogenetic relationship of Bryozoa, phylogenetic analyses based on amino acid sequences of 11 protein coding genes (excluding atp6 and atp8) from 26 metazoan complete mitochondrial genomes were made utilizing Maximum Likelihood (ML) and Bayesian methods, respectively. The results indicate the monopoly of Lophotrochozoa and a close relationship between Chaetognatha and Bryozoa. However, more evidences are needed to clarify the relationship between two groups. Lophophorate appeared to be polyphyletic according to our analyses. Meanwhile, neither analysis supports close relationship between Branchiopod and Phoronida. Four bryozoans form a clade and the relationship among them is T. flabellaris + (F. hispida + (B. neritina + W. subtorquata)), which is in coincidence with traditional classification system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号