首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Biological control is widespread in management of greenhouse sweet pepper crops. Several species of predatory mites, bugs, and parasitoids are used against a wide range of pest species. However, biological control of particular pests like aphids, caterpillars, and the tobacco whitefly, Bemisia tabaci Gennadius, remains problematic. Macrolophus pygmaeus Rambur (Hemiptera: Miridae) is a generalist predatory bug which is used on a large scale in Western European tomato greenhouses. It has already been demonstrated that M. pygmaeus is a valuable biocontrol option in sweet pepper crops, but it has yet to find its way into common practice. Macrolophus pygmaeus should be introduced at the start of the growing season and determining an optimal release strategy is a key step in this process. In tomato crops, M. pygmaeus requires supplemental food releases to reach sufficient population numbers and dispersal levels. In this study, the need for food supplementation in sweet pepper is investigated. Three strategies were tested: (1) no food supplementation, (2) local food supplementation, and (3) full field food supplementation. Both population numbers and dispersal rates of the second generation were higher under the third strategy. Macrolophus pygmaeus oviposits near food sources, therefore dispersal rates are higher when food is more spread out. Pest control was achieved in all treatments, but faster and at lower pest levels under the full field strategy.  相似文献   

2.
Nakano  Ryohei  Hinomoto  Norihide 《BioControl》2021,66(5):659-671

The zoophytophagous predator, Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae), is an important biological control agent. To maintain this insect, several non-crop host plants are used as banker plants in greenhouse crop systems. To optimize the efficiency of the predator-banker plant interaction, it is necessary to investigate how individual predators move between banker plants and crops. However, the movement is difficult to quantify under field conditions. Therefore, we investigated the movement of N. tenuis between tomato plants (Solanum lycopersicum L., Solanales: Solanaceae) and three banker plants (Cleome hassleriana Chod., Brassicales: Cleomaceae; Sesamum indicum L., Lamiales: Pedaliaceae; and Verbena × hybrida Voss, Lamiales: Verbenaceae) in a greenhouse by conducting PCR using plant-species-specific primers. Laboratory analysis results showed that our molecular method could detect N. tenuis activity within a relatively short time (≤ 24 h). In addition, N. tenuis predation on a pest species was unlikely to result in false detection of plant DNA in the pest (suggesting that N. tenuis had been on the plants). Multiple plant species were detected in adult insects collected from the greenhouse plants, indicating that N. tenuis frequently moved across the mentioned plant species. The movement patterns of N. tenuis between plant species varied substantially based on the plant species from which they were collected, which suggested each of the plant species had different functions for N. tenuis. Our findings revealed that planting multiple host plants would stabilize the N. tenuis population in biological control programs.

  相似文献   

3.
The silverleaf whitefly, Bemisia tabaci biotype B (Gennadius) (Hemiptera: Aleyrodidae), is a key pest of tomato (Solanum lycopersicum L.) and other vegetable crops worldwide. To combat this pest, a non-crop banker plant system was evaluated that employs a parasitoid, Encarsia sophia (Girault & Dodd) (Hymenoptera: Aphelinidae) with whitefly, Trialeurodes variabilis (Quaintance) (Hemiptera: Aleyrodidae), as an alternative host for rearing and dispersal of the parasitoid to the target pest. (a) Multi-choice and no-choice greenhouse experiments were conducted to determine host specificity of T. variabilis to papaya (Carica papaya L.) and three vegetable crops including tomato, green bean (Phaseolus vulgaris L.), and cabbage (Brassica oleracea L.). The result showed that papaya was an excellent non-crop banker plant for supporting the non-pest alternative host, T. variabilis, whose adults had a strong specificity to papaya plants for feeding and oviposition in both multi-choice and no-choice tests. (b) The dispersal ability of E. sophia was investigated from papaya banker plants to tomato and green bean plants infested with B. tabaci, as well as to papaya control plants infested with T. variabilis; and (c) the percent parasitism by E. sophia on T. variabilis reared on papaya plants and on B. tabaci infested on tomato plants was also evaluated. These data proved that E. sophia was able to disperse at least 14.5 m away from papaya plants to target tomato, bean or papaya control plants within 48–96 h. Furthermore, E. sophia was a strong parasitoid of both T. variabilis and B. tabaci. There was no significant difference in percent parasitism by E. sophia on T. variabilis (36.2–47.4%) infested on papaya plants or B. tabaci (29–45.9%) on tomato plants. Thus, a novel banker plant system for the potential management of B. tabaci was established using papaya as a non-crop banker plant to support a non-pest alternative host, T. variabilis for maintaining the parasitoid to control B. tabaci. The established banker plant system should provide growers with a new option for long-term control of B. tabaci in greenhouse vegetable production. Ongoing studies on the papaya banker plant system are being performed in commercial greenhouses.  相似文献   

4.
Macrolophus pygmaeus Rambur (Hemiptera: Miridae) is a generalist natural enemy that is used to control multiple pest species in a variety of horticultural crops. The bugs are released at the start of the crop cycle to allow them to establish and build up a population in the crop that can control pest infestations later in the season. To facilitate population growth and dispersal in protected sweet pepper crops, Capsicum annuum L. (Solanaceae), food should be supplemented in a full‐field fashion during the first 6–8 weeks after introduction. To reduce the costs of food supplementation, we investigated whether fewer applications could produce similar results in terms of population growth and dispersal within the greenhouse. First, a cage experiment was carried out in which a weekly and biweekly application rate was tested for three food sources: cysts of brine shrimps Artemia spp. (Anostraca: Artemiidae), eggs of the Mediterranean flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae), and a commercial mix of the two. Artemia spp. cysts resulted in the largest M. pygmaeus populations. There was no difference in population size between the two application rates for any of the food sources. Second, a greenhouse experiment was set up to test both application rates for Artemia spp. cysts under conditions mimicking commercial practice. Again, no difference in population size was observed between a weekly and a biweekly application rate. This insight is good news for growers, as they can use the least expensive food source and they need fewer applications to successfully introduce M. pygmaeus in protected sweet pepper crops.  相似文献   

5.
The life table and biological characteristics of the predatory bug Macrolophus pygmaeus Rambur (Hemiptera: Miridae) were studied when the bugs were fed with Myzus persicae (Sulzer) (Homoptera: Aphididae) feeding on eggplant and with Trialeurodes vaporariorum Westwood (Homoptera: Aleyrodidae) feeding on tomato plants. The tests were done at five temperatures between 15 and 30 °C, using a L16:D8 photoperiod and 65 ± 5% r.h. Most eggs (range 85 to 90%) hatched at 15 and 20 °C. Incubation period was shortest at 27.5 °C (8.45 and 8.38 days on eggplant and tomato, respectively). Preoviposition was also shortest at 27.5 °C (5.10 and 4.75 days on eggplant and tomato, respectively) whereas fecundity was highest at 20 °C (213.90 and 228.25 eggs on eggplant and tomato, respectively). Maximum longevity of females was at 15 °C (122.40 and 129.35 days on eggplant and tomato, respectively). Mean generation time was longest at 15 °C on both host plants (122.75 and 124.64 days, respectively). The intrinsic rate of increase of M. pygmaeus was highest at 27.5 °C with similar values on eggplant (0.0981 day–1) and tomato (0.1040 day–1). Doubling time was shortest at 27.5 °C (7.06 and 6.67 days on eggplant and tomato, respectively) and, also, finite rate of increase was highest at 27.5 °C (1.1031 and 1.1096 on eggplant and tomato, respectively). The results show that the predator M. pygmaeus develops well on the aphid M. persicae or on the whitefly T. vaporariorum, both of which are important pests of vegetable crops. This predator is also well adapted to the temperatures that occur both in greenhouses and in the open field in the Mediterranean region. Compared to other natural enemies of whiteflies, such as Encarsia formosa Gahan (Hymenoptera: Aphelinidae), Macrolophus pygmaeus can increase at relatively low temperatures.  相似文献   

6.
Macrolophus pygmaeus (Heteroptera: Miridae) is an omnivourus predator used to control several pests of horticultural greenhouses. With the aim to explore the relationship between M. pygmaeus and different host plants compared with tomato, plant preferences and bio-cycle traits were studied using: Capsicum annuum, Calendula officinalis, Salvia officinalis, Parietaria officinalis and Solanum nigrum. Species were selected among natural host crop and wild plants. Plant preference was measured by multi-choice host plant selection and olfactometric bioassays. Bio-cycle traits were assessed on reproduction and on nymphal development with and without animal diet support. Among tested plants, P. officinalis was the least attractive under laboratory conditions. Furthermore the availability of prey was crucial for the successful establishment of M. pygmaeus on tested plants, suggesting the inability of nymphs to complete development to adulthood on a strictly phytophagous diet. Nevertheless, M. pygmaeus seemed to prefer plants where phytophagy provides a fitness benefit.  相似文献   

7.
Zoophytophagous plant bugs feed on plant tissue as a source of water and nutrients, besides feeding on prey. By phytophagy, mirid predators activate plant defense responses through different pathways, resulting, among others, in the release of herbivore‐induced plant volatiles (HIPVs). These compounds could repel herbivores and attract parasitoids and predators, and synthetic versions could potentially be used in biological control. Nevertheless, little is known about the influence of synthetic volatiles on mirid attraction. Using Y‐tube olfactometer trials, we evaluated the responses of Nesidiocoris tenuis (Reuter), Macrolophus pygmaeus (Rambur), and Dicyphus bolivari Lindberg (Hemiptera: Miridae), important natural enemies used to control various greenhouse pests, to 10 synthetic versions of HIPVs released from tomato (Solanum lycopersicum L., Solanaceae) plants induced by N. tenuis and M. pygmaeus. Nesidiocoris tenuis responded to five of the 10 HIPVs, whereas M. pygmaeus and D. bolivari responded to four of the 10 HIPVs. Two green leaf volatiles, (Z)‐3‐hexenyl propanoate and (Z)‐3‐hexenyl acetate, and the ester methyl salicylate (MeSA) were attractive to all three mirid predator species. Our results demonstrate that the volatiles released by tomato plants activated by N. tenuis and M. pygmaeus phytophagy are attractive to their conspecifics and also to D. bolivari. Further studies should evaluate the potential of these compounds to attract predatory mirids in the field.  相似文献   

8.
The native parasitoid Eretmocerus mundus Mercet and the predator Macrolophus pygmaeus Rambur are widely used to control Bemisia tabaci (Gennadius) in Mediterranean tomato greenhouses. An optimal biological control strategy for B. tabaci should take into account intraguild interactions between these natural enemies. In this study, predator's prey preferences and prey consumption were studied when offered different parasitoid and whitefly stages. The effect of the host plant on the adults of both natural enemies was also examined. M. pygmaeus preferred to consume B. tabaci over E. mundus when immature stages and adults of B. tabaci and E. mundus were offered. They consumed a larger amount of healthy B. tabaci nymphs and adults than of parasitised nymphs or E. mundus adults. The predator M. pygmaeus interfered with the reproduction of E. mundus females on cotton but not on tomato. However, B. tabaci nymphal mortality on tomato associated with parasitoid host feeding was also lower when the adult parasitoids coexisted with the predators. The joint release of M. pygmaeus and E. mundus adults did not increase the control of the whitefly B. tabaci.  相似文献   

9.
The poinsettia thrips Echinothrips americanus Morgan is a relatively new pest that has spread rapidly worldwide and causes serious damage in both vegetable and ornamental plants. In this study, we investigated if and how effective this pest can be controlled in gerbera by the omnivorous predator Macrolophus pygmaeus (Rambur). Because herbivores on plants can interact through a shared predator, we also investigated how poinsettia thrips control is affected by the presence of the greenhouse whitefly Trialeurodes vaporariorum (Westwood), a pest that commonly coexists with E. americanus in gerbera. In laboratory studies, we found that the predator M. pygmaeus fed on both pests when offered together. Olfactometer tests showed a clear preference of the predators for plants infested by whiteflies but not by thrips. In a greenhouse experiment, densities of both pests on single gerbera plants were reduced to very low levels by the predator, either with both pests present together or alone. Hence, predator‐mediated effects between whiteflies and thrips played only a minor role. The plant feeding of the shared predator probably reduced the dependence of predator survival and reproduction on the densities of the two pests, thereby weakening potential predator‐mediated effects. Thus, M. pygmaeus is a good candidate for biological control of both pests in gerbera. However, further research is needed to investigate pest control at larger scales, when the pests can occur on different plants.  相似文献   

10.
《Biological Control》2000,17(1):55-60
Nymphal development and survival of Macrolophus pygmaeus Rambur (Hemiptera: Miridae) on various host plants, in the presence and absence of various insect prey, and on bee pollen and pollen from Ecbalium elaterium L. (Cucurbitaceae) in various combinations were studied. The effect of temperature on the development and mortality of M. pygmaeus nymphs was also studied. Experiments were conducted in temperature cabinets maintained at 65 ± 5% RH, 16L:8D h photoperiod, and constant temperatures, depending on the experiment. Results demonstrated that M. pygmaeus can successfully complete its development on tomato, eggplant, cucumber, pepper, and green beans in the absence of insect prey. In the presence of insect prey, M. pygmaeus had the shortest period of nymphal development on eggplant with Trialeurodes vaporariorum (Westwood) followed by Myzus persicae (Sulzer), Macrosiphum euphorbiae (Thomas), Aphis gossypii Glover, and Tetranychus urticae Koch. Mortality of M. pygmaeus nymphs was relatively higher in the absence than in the presence of prey on various host plants but was not considered a factor restricting predator establishment. M. pygmaeus completed its development, even in the absence of prey, under a range of temperatures from 15 to 30°C on tomato, with optimum development at 30°C. Bee pollen and pollen from E. elaterium, when offered separately, were sufficient to support successful predator nymphal development and survival. Bee pollen contributed considerably to the development and survival of the nymphs when it was included in diets containing other food sources, like eggplant leaves and M. persicae.  相似文献   

11.
Knowledge about the orientation mechanisms used by two important predaceous mirids (Macrolophus pygmaeus Rambour and Nesidiocoris tenuis (Reuter)) in finding their prey (whitefly Bemisia tabaci (Gennadius) and the tomato borer Tuta absoluta (Meyrick)) is limited. In a Y-tube olfactometer, we tested the behavioral responses of naïve and experienced predators to uninfested plants, herbivore-induced plant volatiles (HIPVs) from plants infested with T. absoluta and/or B. tabaci, the sex pheromone of T. absoluta, and volatiles produced by plants injured by the predators. Nesidiocoris tenuis responds to volatiles produced by uninfested plants only after experience with the plant, whereas naïve and experienced M. pygmaeus show positive chemotaxis. Both predators are attracted to volatiles from prey-infested plants, and we provide the first evidence that experience affects this response in M. pygmaeus. Infestation of the same plant by both prey species elicited similar responses by the two predators as plants infested by either herbivore singly. Neither predator responded to sex pheromones of T. absoluta. Macrolophus pygmaeus avoided plants injured by conspecifics, while N. tenuis females were attracted by such plants. The implications of these results for augmentative biological control are discussed.  相似文献   

12.
Omnivorous arthropods make dietary choices according to the environment in which they forage, mainly availability/quality of plant and/or prey resources. Such decisions and their subsequent impacts on life‐history traits may be affected by the availability of nutrients and water to plants, that is, through bottom‐up forces. By setting up arenas for feeding behavior observation as well as glasshouse cages for plant preference assessment, we studied effects of the presence of prey (Lepidoptera eggs) and nitrogen/water availability to host tomato plants on the foraging behavior and life‐history traits in the omnivorous predator Macrolophus pygmaeus (Heteroptera: Miridae). In the absence of prey, the predator fed equally on the plants treated with various levels of nitrogen and water. In the presence of prey, however, the feeding rate on plants decreased when the plant received low water input. The feeding rate on prey was positively correlated with feeding rate on plants; that is, prey feeding increased with plant feeding when the plants received high water input. Moreover, plants receiving high water input attracted more M. pygmaeus adults compared with those receiving low water input. For M. pygmaeus fitness, the presence of prey enhanced its fertility and longevity, but the longevity decreased when plants received low compared with high water input. In conclusion, the omnivorous predator may be obliged to feed on plants to obtain water, and plant water status may be a limiting factor for the foraging behavior and fitness of the omnivorous predator.  相似文献   

13.
The use of plant-feeding predators for biological pest control has traditionally been neglected, mainly due to the risk of them feeding on crop plants and causing economically significant damage. Yet, these predators offer advantages for biological pest control. They are mostly generalist predators that have an impact on several crop pests. They may also be able to establish on crops early in the growing season, when pests colonize them, and can remain on the target crop when prey is scarce. Therefore, management programs must seek to minimize risks while maximizing benefits. In vegetable crops, most of the literature on zoophytophagous predators has focused on four species: Dicyphus tamaninii, Dicyphus hesperus, Macrolophus pygmaeus and Nesidiocoris tenuis (Heteroptera, Miridae). The capacity of these species to produce crop damage in tomatoes varies. This damage has been related to relative predator-to-prey abundance, with damage increasing at high predator abundances and low prey densities. In this review, we analyze the use of these species in biological control programs and the associated benefits and risks. The differences in the damage caused by the four predatory species examined could not be attributed to either stylet morphology or saliva composition. However, feeding on specific plant structures where they may find the resources required for their development is what probably determines feeding damage. Understanding when and why these predators increase their feeding on plants or on certain plant parts is of crucial importance for integrating them in biological control programs.  相似文献   

14.
15.
The suitability of cysts of the brine shrimp Artemia sp. as a factitious food for the predator Macrolophus pygmaeus Rambur was investigated. The influence of decapsulation time and hydration of the cysts on the performance of the predator were studied in the absence of plant material. A longer time of decapsulation had a positive influence on the development of the predator. Hydration of cysts had a significant impact on nymphal survival when cysts where non‐decapsulated or poorly decapsulated. An experiment in which nymphs were switched from a diet of hydrated cysts to non‐hydrated cysts showed that in the absence of plant material the relative importance of hydrating the cysts decreased with nymphal age. Especially, the first instar and to a lesser extent the second instar appear to be susceptible to water shortage. Effects of prolonged rearing on development and reproduction on brine shrimp cysts from different origins were tested in the presence of plant material. Rearing M. pygmaeus on Artemia sp. (Jingyu Lake) cysts yielded similar survival, development, adult weight and fecundity in the fourth as in the second generation. In contrast, for Artemia franciscana cysts, an increase in nymphal development was notable. Biochemical analyses showed that total amino acid content and the concentration of the different amino acids did not differ among diets and generations. There were, however, differences in total fatty acid content between the different diets and generations and in the concentration of certain fatty acids, indicating that insects fed brine shrimp cysts may show nutritional deficiencies compared to those reared on a diet of Ephestia kuehniella eggs. Our results indicate that decapsulated brine shrimp cysts are an economically viable alternative food source in at least part of the rearing process for M. pygmaeus.  相似文献   

16.
The use of Nesidiocoris tenuis (Hemiptera: Miridae) as a biocontrol agent is controversial as it is considered a pest in Northwest European tomato greenhouses, due to its tendency to damage the plant and fruit. Necessary chemical plant protection products to control N. tenuis have toxic side effects on important beneficials like Macrolophus pygmaeus (Hemiptera: Miridae), which jeopardizes the whole IPM programme. In this study, several commercial tomato greenhouses were monitored for mirid populations. The relationship between the number of N. tenuis individuals and plant damage was assessed in function of availability of prey and interaction with M. pygmaeus. These greenhouse data were used to determine a practical density intervention threshold. Next, the hypothesis that a Pepino mosaic virus (PepMV) infection increases plant and fruit damage by N. tenuis (as has been shown for M. pygmaeus) was tested. Plant damage occurred when the average number of predatory bugs in the head of the plant exceeded 16 per ten plants. Plant damage increased in severity at increasing predatory bug densities, independent of the availability of prey and M. pygmaeus presence. Plant and fruit damage were not affected by the presence of PepMV, as was shown for fruit damage in previous studies for M. pygmaeus. Our study provides a practical density intervention threshold for growers in greenhouse crops. Simple monitoring of the number of predatory bugs in the head of the plant can be used to take specific biocontrol actions. It was also shown that only the predatory bug N. tenuis itself causes damage, and there is no interaction with PepMV.  相似文献   

17.
The goal of banker plant systems is to sustain a reproducing population of natural enemies within a crop that will provide long-term pest suppression. The most common banker plant system consists of cereal plants infested with Rhopalosiphum padi L. as a host for the parasitoid Aphidius colemani L. Aphidius colemani continually reproduce and emerge from the banker plants to suppress aphid pests such as Aphis gossypii Glover and Myzus persicae Sulzer. Banker plant systems have been investigated to support 19 natural enemy species targeting 11 pest species. Research has been conducted in the greenhouse and field on ornamental and food crops. Despite this there is little consensus of an optimal banker plant system for even the most frequently targeted pests. Optimizing banker plant systems requires future research on how banker plants, crop species, and alternative hosts interact to affect natural enemy preference, dispersal, and abundance. In addition, research on the logistics of creating, maintaining, and implementing banker plant systems is essential. An advantage of banker plant systems over augmentative biological control is preventative control without repeated, expensive releases of natural enemies. Further, banker plants conserve a particular natural enemy or potentially the ‘right diversity’ of natural enemies with specific alternative resources. This may be an advantage compared to conserving natural enemy diversity per se with other conservation biological control tactics. Demonstrated grower interest in banker plant systems provides an opportunity for researchers to improve biological control efficacy, economics, and implementation to reduce pesticide use and its associated risks.  相似文献   

18.
The omnivorous predators Nesidiocoris tenuis (Reuter) and Macrolophus pygmaeus Rambur (Hemiptera: Miridae) are indigenous natural enemies that commonly inhabit tomato crops in the Mediterranean basin. Both predators are mass-reared and primarily released to control whiteflies, although recently they have also contributed to the control of the invasive tomato pest Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). The life history traits of these two predators have been studied in the laboratory under the conditions of being fed exclusively the eggs of T. absoluta or the eggs of the factitious prey Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae). Immature stages of both predator species successfully developed while preying on eggs of T. absoluta. However, the mature M. pygmaeus females produced significantly lower numbers of offspring in comparison to the offspring produced when preying on E. kuehniella eggs. This resulted in higher than expected demographic indexes for N. tenuis when compared to M. pygmaeus (e.g., the intrinsic rates of increase were 0.127 and 0.005, respectively). Our results support previous studies on the potential of N. tenuis has as biological control agent of T. absoluta, and indicate that the role of M. pygmaeus in controlling T. absoluta in the absence of other food sources is possibly limited.  相似文献   

19.
The omnivorous predators Macrolophus pygmaeus and Nesidiocoris tenuis (Hemiptera: Miridae) are important biological control agents of pests on tomato crops. In this study, potential intraguild predation (IGP) interactions between the two species were investigated on tomato. We examined: (a) the within plant distribution of both species in the field, (b) the within plant distribution of each predatory species when co-occurred at high densities on tomato caged plants, (c) their behavioral interactions when enclosed in experimental arenas and (d) the development young and old nymphs of M. pygmaeus when enclosed together with N. tenuis adults. Results revealed that the two predators showed a different distribution pattern on the plants, with N. tenuis exploiting mostly the upper part, whereas M. pygmaeus were mostly observed on the 5th to the 7th leaf from the top. However, when the predators co-occurred, N. tenuis or M. pygmaeus individuals were recorded with increased numbers on the lower or the higher part of the plant, respectively. In the presence of N. tenuis adult young nymphs of M. pygmaeus completed their development to the adult stage, when alternative prey (lepidopteran eggs) was present on the plant, however failed to reach adulthood in the absence of alternative prey. A high percentage of the dead nymphs found with their body fluids totally sucked indicating predation by N. tenuis. However, large 4th instar nymphs of M. pygmaeus were much less vulnerable to N. tenuis than younger. The behavior of N. tenuis was affected by the presence of M. pygmaeus, but at a rate similar to that when two individuals of N. tenuis were enclosed together. Contacts between the predators were recorded in a similar frequency in mono- and heterospecific treatments, whereas aggressive behavior was not observed. This study shows that intraguild interactions between M. pygmaeus and N. tenuis occur but are not intensive. The potential implications of the outcomes for biological control are discussed.  相似文献   

20.
Monitoring of pest presence and population development in the crop during the season is essential for integrated pest management. Although many tools, for instance coloured sticky traps, have been developed, the full advantage of available information is rarely taken into account in decision‐making. The reasons behind include high workload in practice but also the poorly studied relationships between trap catches and populations in the crop. Here, we investigate whether commercially available coloured sticky traps can be used as tool to monitor population densities of a pest–predator system in glasshouse tomato. The response of Macrolophus pygmaeus (Rambur) (Hemiptera, Miridae) to blue and yellow sticky traps was tested in laboratory and glasshouse experiments. The results indicate that M. pygmaeus can be monitored equally well with both trap colours. The number of trapped insects showed good correlation with the population densities on the crop. Under growing conditions, more M. pygmaeus were trapped on blue compared with yellow sticky traps. However, due to the known preference of Trialeurodes vaporariorum (Westwood) (Hemiptera, Aleyrodidae), yellow traps should be used for a combined pest–predator monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号