首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
David B. Ritland 《Oecologia》1991,88(1):102-108
Summary Understanding the dynamics of defensive mimicry requires accurately characterizing the comparative palatability of putative models and mimics. The Florida viceroy butterfly (Limenitis archippus floridensis) is traditionally considered a palatable Batesian mimic of the purportedly distasteful Florida queen (Danaus gilippus berenice). I re-evaluated this established hypothesis by directly assessing palatability of viceroys and queens to red-winged blackbirds in a laboratory experiment. Representative Florida viceroys were surprisingly unpalatable to red-wings; only 40% of viceroy abdomens were entirely eaten (compared to 98% of control butterfly abdomens), and nearly one-third were immediately tasterejected after a single peck. In fact, the viceroys were significantly more unpalatable than representative Florida queens, of which 65% were eaten and 14% taste-rejected. Thus, viceroys and queens from the sampled populations exemplify Müllerian rather than Batesian mimicry, and the viceroy appears to be the stronger model. These findings prompt a reassessment of the ecological and evolutionary dynamics of this classic mimicry relationship.  相似文献   

2.
Batesian and aggressive mimicry are united by deceit: Batesian mimics deceive predators and aggressive mimics deceive prey. This distinction is blurred by Myrmarachne melanotarsa, an ant-like jumping spider (Salticidae). Besides often preying on salticids, ants are well defended against most salticids that might target them as potential prey. Earlier studies have shown that salticids identify ants by their distinctive appearance and avoid them. They also avoid ant-like salticids from the genus Myrmarachne. Myrmarachne melanotarsa is an unusual species from this genus because it typically preys on the eggs and juveniles of ant-averse salticid species. The hypothesis considered here is that, for M. melanotarsa, the distinction between Batesian and aggressive mimicry is blurred. We tested this by placing female Menemerus sp. and their associated hatchling within visual range of M. melanotarsa, its model, and various non-ant-like arthropods. Menemerus is an ant-averse salticid species. When seeing ants or ant mimics, Menemerus females abandoned their broods more frequently than when seeing non-ant-like arthropods or in control tests (no arthropods visible), as predicted by our hypothesis that resembling ants functions as a predatory ploy.  相似文献   

3.
4.
    
Adaptive resemblance (AR) is a broad and inclusive concept which requires that only one condition be met: that members of a species of organism gain fitness due to a selective advantage imparted by a resemblance to some cue or signal in the organism's environment. Essential to the evolution and maintenance of AR is the dynamic and ongoing relationship among model, mimic and selective agent (SA) that provides a complex selective milieu within which evolves resemblance. Because specifics of a resemblance, including phenotypic traits being imitated, the nature of the model, and the function of the resemblance, are not relevant to the concept of AR, the diversity and abundance of such resemblances are limited only by the diversity and abundance of exploitable model-SA relationships. Defined as it is by a single mimic-related criterion, AR thus provides the basis for uniting under one conceptual umbrella diverse resemblances that range from cryptic to sematic, interspecific to intraspecific, organismal to molecular, and material to attributive or implied. The defining criterion excludes incidental resemblances which are contrastingly defined as those which are the result of coincidental phenotypic responses to functional requirements or to other selective influences. Some adaptive resemblances are attributable to more than one selective factor and thus may be categorized in more than one way (having aposematic and procryptic functions, for instance), while some others apparently are due to incidental resemblance as well as adaptive (such as thermoadaptive and procryptic functions).  相似文献   

5.
David B. Ritland 《Oecologia》1995,103(3):327-336
Viceroy butterflies (Limenitis archippus), long considered palatable mimics of distasteful danaine butterflies, have been shown in studies involving laboratoryreared specimens to be moderately unpalatable to avian predators. This implies that some viceroys are Müllerian co-mimics, rather than defenseless Batesian mimics, of danaines. Here, I further test this hypothesis by assessing the palatability of wild-caught viceroys from four genetically and ecologically diverse populations in the southeastern United States. Bioassays revealed that viceroys sampled from three sites in Florida and one in South Carolina were all moderately unpalatable to captive redwinged blackbird predators, which ate fewer than half of the viceroy abdomens presented. Red-wings commonly exhibited long manipulation times and considerable distress behavior when attempting to eat a viceroy abdomen, and they taste-rejected over one-third of viceroys after a single peck. These findings, the first based on wild-caught butterflies, support the hypothesis that the viceroy-danaine relationship in some areas represents Müllerian mimicry, prompting a reassessment of selective forces shaping the interaction. Moreover, considerable variation in palatability of individual viceroys, and in behavior of individual birds, contributes to the complexity of chemical defense and mimicry in this system.  相似文献   

6.
    
Interspecific social dominance mimicry (ISDM) is a proposed form of social parasitism in which a subordinate species evolves to mimic and deceive a dominant ecological competitor in order to avoid attack by the dominant, model species. The evolutionary plausibility of ISDM has been established previously by the Hairy‐Downy game (Prum & Samuelson). Psychophysical models of avian visual acuity support the plausibility of visual ISDM at distances ~>2–3 m for non‐raptorial birds, and ~>20 m for raptors. Fifty phylogenetically independent examples of avian ISDM involving 60 model and 93 mimic species, subspecies, and morphs from 30 families are proposed and reviewed. Patterns of size differences, phylogeny, and coevolutionary radiation generally support the predictions of ISDM. Mimics average 56–58% of the body mass of the proposed model species. Mimics may achieve a large potential deceptive social advantage with <20% reduction in linear body size, which is well within the range of plausible, visual size confusion. Several, multispecies mimicry complexes are proposed (e.g. kiskadee‐type flycatchers) which may coevolve through hierarchical variation in the deceptive benefits, similar to Müllerian mimicry. ISDM in birds should be tested further with phylogenetic, ecological, and experimental investigations of convergent similarity in appearance, ecological competition, and aggressive social interactions between sympatric species. Evolutionary explanations of mimicry must consider the possibility that mimics evolve to deceive model species themselves. © 2014 The Linnean Society of London  相似文献   

7.
    
Müller's theory of warning color and mimicry, despite forming a textbook example of frequency-dependent selection, has rarely been demonstrated in the wild. This may be largely due to the practical and statistical difficulties of measuring natural selection on mobile prey species. Here we demonstrate that this selection acts in alpine beetle communities by using tethered beetles exposed to natural predators. Oreina gloriosa leaf beetles (Coleoptera: Chrysomelidae) possess chemical defense in the form of cardenolides, accompanied by what appears to be warning color in bright metallic blues and greens. Individuals that match the locally predominant color morph have increased survival, with odds of week-long survival increased by a factor of 1.67 over those that do not match. This corresponds to selection of 13% against foreign morphs. Such selection, acting in concert with variation in community composition, could be responsible for geographic variation in warning color. However, in the face of this purifying selection, the within-population polymorphism seen in many Oreina species remains paradoxical.  相似文献   

8.
Müllerian mimicry is typically thought to arise as a consequence of defended prey species adopting a similar way of signalling their unprofitability, thereby reducing the costs of predator education. Here we consider subsequent selection on the morphology of prey species, in the potentially lengthy period of time when predators are generally aware of the noxious qualities of their prey (and so no further learning is involved). Using a pair of stochastic dynamic programming equations which describe both the toxin burdens of a predator and its energy level, we identified the optimal state-dependent rules that maximize a predator's long-term survivorship, and examined the implications of this behaviour for the evolution of prey morphologies. When palatable prey are in short supply then those prey species which contain relatively low doses of toxins become profitable to consume by hungry predators. Under these conditions, a weakly defended prey could gain selective advantage in the post educational period by resembling a prey species which contained a higher dose of the same or different toxins, although the precise nature of the ecological relationship between model and mimic could either be mutualistic or parasitic depending on how mimic density increases when favoured by selection. Our work formally demonstrates that one does not always need to invoke educational effects to explain why two or more unpalatable species have evolved a similar appearance, or to explain why mimetic similarity among distasteful species is maintained over time. When two species contain high levels of different toxins then they may gain mutual advantage by resembling one another, not only by educating the predator as to their common unprofitability (classical Müllerian mimicry), but also by increasing predator uncertainty as to the specific kind of toxin a prey item contains.  相似文献   

9.
    
Geographical variation of elytra color pattern in two sibling ladybird species, Harmonia yedoensis and H. axyridis (Coleoptera: Coccinellidae), was examined. The two species are distributed sympatrically in central Japan; however, only H. yedoensis and H. axyridis occur in the Ryukyu Islands (southern Japan) and Hokkaido island (northern Japan), respectively. The frequency of elytra color patterns was significantly different between the two species in all sympatric locations and our results were inconsistent with the classical theory on Müllerian mimicry. The most dominant pattern of H. axyridis was the least dominant of H. yedoensis in all sympatric populations. Furthermore, the frequency of the non‐melanic form (red ground color with or without black spots) increased towards the south in H. yedoensis. This tendency was in contrast to the known geographical cline in H. axyridis in which the melanic form (black ground color with red spots) was gradually displaced with the non‐melanic form northwards in the Japanese archipelago. We discuss possible selective factors including predator avoidance, thermal adaptation and reproductive character displacement, all of which might contribute to the maintenance of the color polymorphism in the two Harmonia species.  相似文献   

10.
In this paper I argue that the nature of mimetic relationships remains contentious because there are insufficient data to enable full evaluation of theoretical models. There is, however, a growing appreciation of the need to draw together empirical studies to provide foundations for theoretical work. I review some recent data that considers the responses of predators to changing numbers of defended prey items and the nature of mimicry along a palatability spectrum. A simple model of predator behaviour is constructed which combines assumptions from Pavlovian learning studies with traditional ‘number dependent’ learning models. This model has two important properties. First it shows that Pavlovian assumptions can be represented in a simple model which generates interesting predictions. Second it indicates some areas that still need detailed empirical study – most importantly perhaps is the way that predators respond to prey with different levels of edibility. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
    
Few insects exhibit the striking colour pattern radiation found in bumble bees (Bombus), which have diversified globally into a wide range of colours and patterns. Their potent sting is often advertised by conspicuous bands of contrasting colour commonly mimicked by scores of harmless (Batesian mimics) and noxious species (Müllerian co‐mimics). Despite extensive documentation of colour pattern diversification, next to nothing is known about the genetic regulation of pattern formation in bumble bees, hindering progress toward a more general model of the evolution of colour pattern mimicry. A critical first step in understanding the colour pattern genotype is an unambiguous understanding of the phenotype under selection, which has not been objectively defined in bumble bees. Here, we quantitatively define the principal colour pattern elements that comprise the phenotype array across all species. Matrix analysis of meticulously scored colour patterns of ~95% of described species indicates there are 12 discrete primary ‘ground plan’ elements in common among all species, many of which correspond to segmentation patterning. Additional secondary elements characterize individual species and geographical variants. The boundaries of these elements appear to correspond to expression patterns of Hox genes in Drosophila and Apis but also suggest novel post‐Hox specialization of abdominal patterning. Our findings provide the first foundation for exploring candidate genes regulating adaptive pattern variation in bumble bees and broaden the framework for understanding common genetic mechanisms of pattern evolution in insects. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 384–404.  相似文献   

12.
    
Hybrid zones, where distinct populations meet and interbreed, give insight into how differences between populations are maintained despite gene flow. Studying clines in genetic loci and adaptive traits across hybrid zones is a powerful method for understanding how selection drives differentiation within a single species, but can also be used to compare parallel divergence in different species responding to a common selective pressure. Here, we study parallel divergence of wing colouration in the butterflies Heliconius erato and H. melpomene, which are distantly related Müllerian mimics which show parallel geographic variation in both discrete variation in pigmentation, and quantitative variation in structural colour. Using geographic cline analysis, we show that clines in these traits are positioned in roughly the same geographic region for both species, which is consistent with direct selection for mimicry. However, the width of the clines varies markedly between species. This difference is explained in part by variation in the strength of selection acting on colour traits within each species, but may also be influenced by differences in the dispersal rate and total strength of selection against hybrids between the species. Genotyping‐by‐sequencing also revealed weaker population structure in H. melpomene, suggesting the hybrid zones may have evolved differently in each species, which may also contribute to the patterns of phenotypic divergence in this system. Overall, we conclude that multiple factors are needed to explain patterns of clinal variation within and between these species, although mimicry has probably played a central role.  相似文献   

13.
Theoretical and empirical observations generally support Darwin's view that sexual dimorphism evolves due to sexual selection on, and deviation in, exaggerated male traits. Wallace presented a radical alternative, which is largely untested, that sexual dimorphism results from naturally selected deviation in protective female coloration. This leads to the prediction that deviation in female rather than male phenotype causes sexual dimorphism. Here I test Wallace's model of sexual dimorphism by tracing the evolutionary history of Batesian mimicry-an example of naturally selected protective coloration-on a molecular phylogeny of Papilio butterflies. I show that sexual dimorphism in Papilio is significantly correlated with both female-limited Batesian mimicry, where females are mimetic and males are non-mimetic, and with the deviation of female wing colour patterns from the ancestral patterns conserved in males. Thus, Wallace's model largely explains sexual dimorphism in Papilio. This finding, along with indirect support from recent studies on birds and lizards, suggests that Wallace's model may be more widely useful in explaining sexual dimorphism. These results also highlight the contribution of naturally selected female traits in driving phenotypic divergence between species, instead of merely facilitating the divergence in male sexual traits as described by Darwin's model.  相似文献   

14.
    
Ant-eating spiders, Zodarion germanicum and Z. rubidum , were found to resemble ants structurally (size, colour, setosity) and behaviourally (ant-like movement, antennal illusion). Zodarion germanicum mimics large dark ants, such as Formica cinerea , whereas Z. rubidum resembles red ants, e.g. Myrmica sabuleti . Thus, these spiders are generalized Batesian mimics. The two spiders use aggressive mimicry during prey capture. When a spider carries a captured ant it will try to pass by approaching ants using special deceiving behaviour, which is based on imitation of ants' nestmate recognition. The spider first taps the antennae of the curious ant with its front legs (transmitting a tactile cue), then exposes its prey (the ant corpse) which the ant antennates (thus the corpse transmits an olfactory cue). The distal part of the front legs of Zodarion are almost without macrosetae similar to the antennae of ants. Additionally, all the other legs are covered with flattened incised setae, which imitate the dense setosity of ants' limbs. These remarkable microstructural imitations are believed to improve imitation of tactile signals by spiders. Moreover, by tapping, zodariids can presumably recognize the approaching intruder and decide whether to undertake the risk of deception or to run away. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 75 , 517–532.  相似文献   

15.
Color patterns commonly vary geographically within species, but it is rare that such variation corresponds with divergent antipredator strategies. The polymorphic salamander Ensatina eschscholtzii, however, may represent such a case. In this species, most subspecies are cryptically colored, whereas E. e. xanthoptica, the Yellow eyed ensatina, is hypothesized to be an aposematic mimic of highly toxic Pacific newts (genus Taricha). To test the mimicry hypothesis, we conducted feeding trials using Western Scrub-Jays, Aphelocoma californica. In every feeding trial, we found that jays, following presentation with the presumed model (T. torosa), were more hesitant to contact the presumed mimic (E. e. xanthoptica) than a control subspecies lacking the postulated aposematic colors (E. e. oregonensis). The median time to contact was 315 sec for the mimic and 52 sec for the control. These results support the mimicry hypothesis, and we suggest that E. e. xanthoptica is likely a Batesian mimic, rather a Müllerian or quasi-Batesian mimic, of Pacific newts.  相似文献   

16.
    
The nature of signal mimicry between defended prey (known as Müllerian mimicry) is controversial. Some authors assert that it is always mutualistic and beneficial, whilst others speculate that less well defended prey may be parasitic and degrade the protection of their better defended co-mimics (quasi-Batesian mimicry). Using great tits (Parus major) as predators of artificial prey, we show that mimicry between unequally defended co-mimics is not mutualistic, and can be parasitic and quasi-Batesian. We presented a fixed abundance of a highly defended model and a moderately defended dimorphic (mimic and distinct non-mimetic) species, and varied the relative frequency of the two forms of the moderately defended prey. As the mimic form increased in abundance, per capita predation on the model-mimic pair increased. Furthermore, when mimics were rare they gained protection from predation but imposed no co-evolutionary pressure on models. We found that the feeding decisions of the birds were affected by their individual toxic burdens, consistent with the idea that predators make foraging decisions which trade-off toxicity and nutrition. This result suggests that many prey species that are currently assumed to be in a simple mutualistic mimetic relationship with their co-mimic species may actually be engaged in an antagonistic co-evolutionary process.  相似文献   

17.
    
Species richness varies among clades, yet the drivers of diversification creating this variation remain poorly understood. While abiotic factors likely drive some of the variation in species richness, ecological interactions may also contribute. Here, we examine one class of potential contributors to species richness variation that is particularly poorly understood: mutualistic interactions. We aim to elucidate large‐scale patterns of diversification mediated by mutualistic interactions using a spatially explicit population‐based model. We focus on mutualistic Müllerian mimicry between conspicuous toxic prey species, where convergence in color patterns emerges from predators' learning process. To investigate the effects of Müllerian mimicry on species diversification, we assume that some speciation events stem from shifts in ecological niches, and can also be associated with shift in mimetic color pattern. Through the emergence of spatial mosaics of mimetic color patterns, Müllerian mimicry constrains the geographical distribution of species and allows different species occupying similar ecological niches to exist simultaneously in different regions. Müllerian mimicry and the resulting spatial segregation of mimetic color patterns thus generate more balanced phylogenetic trees and increase overall species diversity. Our study sheds light on complex effects of Müllerian mimicry on ecological, spatial, and phylogenetic diversification.  相似文献   

18.
Warning signals are a striking example of natural selection present in almost every ecological community – from Nordic meadows to tropical rainforests, defended prey species and their mimics ward off potential predators before they attack. Yet despite the wide distribution of warning signals, they are relatively scarce as a proportion of the total prey available, and more so in some biomes than others. Classically, warning signals are thought to be governed by positive density-dependent selection, i.e. they succeed better when they are more common. Therefore, after surmounting this initial barrier to their evolution, it is puzzling that they remain uncommon on the scale of the community. Here, we explore factors likely to determine the prevalence of warning signals in prey assemblages. These factors include the nature of prey defences and any constraints upon them, the behavioural interactions of predators with different prey defences, the numerical responses of predators governed by movement and reproduction, the diversity and abundance of undefended alternative prey and Batesian mimics in the community, and variability in other ecological circumstances. We also discuss the macroevolution of warning signals. Our review finds that we have a basic understanding of how many species in some taxonomic groups have warning signals, but very little information on the interrelationships among population abundances across prey communities, the diversity of signal phenotypes, and prey defences. We also have detailed knowledge of how a few generalist predator species forage in artificial laboratory environments, but we know much less about how predators forage in complex natural communities with variable prey defences. We describe how empirical work to address each of these knowledge gaps can test specific hypotheses for why warning signals exhibit their particular patterns of distribution. This will help us to understand how behavioural interactions shape ecological communities.  相似文献   

19.
    
The evolution of mimicry in similarly defended prey is well described by the Müllerian mimicry theory, which predicts the convergence of warning patterns in order to gain the most protection from predators. However, despite this prediction, we can find great diversity of color patterns among Müllerian mimics such as Heliconius butterflies in the neotropics. Furthermore, some species have evolved the ability to maintain multiple distinct warning patterns in single populations, a phenomenon known as polymorphic mimicry. The adaptive benefit of these polymorphisms is questionable since variation from the most common warning patterns is expected to be disadvantageous as novel signals are punished by predators naive to them. In this study, we use artificial butterfly models throughout Central and South America to characterize the selective pressures maintaining polymorphic mimicry in Heliconius doris. Our results highlight the complexity of positive frequency‐dependent selection, the principal selective pressure driving convergence among Müllerian mimics, and its impacts on interspecific variation of mimetic warning coloration. We further show how this selection regime can both limit and facilitate the diversification of mimetic traits.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号