首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Obesity is becoming a global pandemic that is projected to increase significantly over the next few decades. Unfortunately, studies of drug dosing and pharmacokinetics have largely excluded obese patients. Currently, literature inadequately characterizes drug disposition in these patients. Only a limited selection of literature addresses antibacterial dosing in obesity, and virtually none characterizes antifungal dosing in obesity. This review discusses the changes in pharmacokinetics that occur in obesity and the available in vitro and in vivo data describing the disposition of antifungal agents in obese animals and patients.  相似文献   

2.
Mechanism-based pharmacokinetic-pharmacodynamic (PK/PD) modelling is the standard computational technique for simulating drug treatment of infectious diseases with the potential to enhance our understanding of drug treatment outcomes, drug deployment strategies, and dosing regimens. Standard methodologies assume only a single drug is used, it acts only in its unconverted form, and that oral drugs are instantaneously absorbed across the gut wall to their site of action. For drugs with short half-lives, this absorption period accounts for a significant period of their time in the body. Treatment of infectious diseases often uses combination therapies, so we refined and substantially extended the PK/PD methodologies to incorporate (i) time lags and drug concentration profiles resulting from absorption across the gut wall and, if required, conversion to another active form; (ii) multiple drugs within a treatment combination; (iii) differing modes of action of drugs in the combination: additive, synergistic, antagonistic; (iv) drugs converted to an active metabolite with a similar mode of action. This methodology was applied to a case study of two first-line malaria treatments based on artemisinin combination therapies (ACTs, artemether-lumefantrine and artesunate-mefloquine) where the likelihood of increased artemisinin tolerance/resistance has led to speculation on their continued long-term effectiveness. We note previous estimates of artemisinin kill rate were underestimated by a factor of seven, both the unconverted and converted form of the artemisinins kill parasites and the extended PK/PD methodology produced results consistent with field observations. The simulations predict that a potentially rapid decline in ACT effectiveness is likely to occur as artemisinin resistance spreads, emphasising the importance of containing the spread of artemisinin resistance before it results in widespread drug failure. We found that PK/PD data is generally very poorly reported in the malaria literature, severely reducing its value for subsequent re-application, and we make specific recommendations to improve this situation.  相似文献   

3.
4.
Although there are currently more than 30 antibody-drug conjugates (ADC) in clinical development for the treatment of blood cancers and solid tumors, comparison of their clinical pharmacokinetics (PK) is challenging because of the large number of, and differences between, the targets, ADC constructs, dosing regimens, and patient populations. In this review, we standardized the evaluation, using non-compartmental PK data reported at Cycle 1, i.e., following the first drug administration of what is usually a repeated-dose treatment, in monotherapy. We report ADC clinical PK properties, dosing regimen, determination of doses ranges and associated maximum tolerated doses. We also evaluated the effect of structural characteristics and target types (hematological vs. solid tumors) on PK. In addition, we discuss how integration of PK/pharmacodynamics approaches on top of classical dose escalation in first-in-human studies may improve dosing regimen determination for subsequent phases of clinical development.  相似文献   

5.
《MABS-AUSTIN》2013,5(4):859-870
Although there are currently more than 30 antibody-drug conjugates (ADC) in clinical development for the treatment of blood cancers and solid tumors, comparison of their clinical pharmacokinetics (PK) is challenging because of the large number of, and differences between, the targets, ADC constructs, dosing regimens, and patient populations. In this review, we standardized the evaluation, using non-compartmental PK data reported at Cycle 1, i.e., following the first drug administration of what is usually a repeated-dose treatment, in monotherapy. We report ADC clinical PK properties, dosing regimen, determination of doses ranges and associated maximum tolerated doses. We also evaluated the effect of structural characteristics and target types (hematological vs. solid tumors) on PK. In addition, we discuss how integration of PK/pharmacodynamics approaches on top of classical dose escalation in first-in-human studies may improve dosing regimen determination for subsequent phases of clinical development.  相似文献   

6.
Adjusting the dose of antifungal agents for renal and hepatic impairment can be challenging given that clinicians must rely on limited pharmacokinetic data to derive specific regimens. These pharmacokinetic studies are typically performed in a small number of patients without invasive fungal infection, and results are not often reported in concert with accepted pharmacodynamic indices. This article aims to review pertinent pharmacokinetic studies of antifungal drugs in patients with renal or hepatic dysfunction. The impact of novel continuous renal replacement therapy techniques on the pharmacokinetic disposition of antifungal agents will also be described where data are available. Subsequently, this review provides recommendations for antifungal drug dosing in patients with kidney or liver dysfunction after accounting for established or emerging pharmacokinetic-pharmacodynamic relationships as they relate to antifungal drug efficacy in vivo.  相似文献   

7.
Animal infection models in the pharmacokinetic/pharmacodynamic (PK/PD) evaluation of antimicrobial therapy serve an important role in preclinical assessments of new antibiotics, dosing optimization for those that are clinically approved, and setting or confirming susceptibility breakpoints. The goal of animal model studies is to mimic the infectious diseases seen in humans to allow for robust PK/PD studies to find the optimal drug exposures that lead to therapeutic success. The PK/PD index and target drug exposures obtained in validated animal infection models are critical components in optimizing dosing regimen design in order to maximize efficacy while minimize the cost and duration of clinical trials. This review outlines the key components in animal infection models which have been used extensively in antibiotic discovery and development including PK/PD analyses.  相似文献   

8.
Appropriate dosing of antifungal drugs is crucial to achieving favorable outcomes in patients with invasive fungal infections. The use of various types of renal replacement therapy (RRT) in patients with severe acute or chronic renal insufficiency adds another level of complexity to the already challenging use of these drugs. The medical literature provides only a limited number of studies specifically addressing the use of antifungal agents in patients receiving RRT, and there are a number of inherent difficulties in interpreting and applying these studies of drug dosing during RRT to individual patients. This article briefly reviews recent studies examining the dosing of antifungal agents during RRT, and also briefly reviews device-related and drug-related factors that determine the removal of drugs during RRT. Finally, this article summarizes current recommendations for dosing of antifungal agents in patients receiving RRT and highlights areas for future study.  相似文献   

9.
Pharmacogenetic factors operate at pharmacokinetic as well as pharmacodynamic levels-the two components of the dose-response curve of a drug. Polymorphisms in drug metabolizing enzymes, transporters and/or pharmacological targets of drugs may profoundly influence the dose-response relationship between individuals. For some drugs, although retrospective data from case studies suggests that these polymorphisms are frequently associated with adverse drug reactions or failure of efficacy, the clinical utility of such data remains unproven. There is, therefore, an urgent need for prospective data to determine whether pre-treatment genotyping can improve therapy. Various regulatory guidelines already recommend exploration of the role of genetic factors when investigating a drug for its pharmacokinetics, pharmacodynamics, dose-response relationship and drug interaction potential. Arising from the global heterogeneity in the frequency of variant alleles, regulatory guidelines also require the sponsors to provide additional information, usually pharmacogenetic bridging data, to determine whether data from one ethnic population can be extrapolated to another. At present, sponsors explore pharmacogenetic influences in early clinical pharmacokinetic studies but rarely do they carry the findings forward when designing dose-response studies or pivotal studies. When appropriate, regulatory authorities include genotype-specific recommendations in the prescribing information. Sometimes, this may include the need to adjust a dose in some genotypes under specific circumstances. Detailed references to pharmacogenetics in prescribing information and pharmacogenetically based prescribing in routine therapeutics will require robust prospective data from well-designed studies. With greater integration of pharmacogenetics in drug development, regulatory authorities expect to receive more detailed genetic data. This is likely to complicate the drug evaluation process as well as result in complex prescribing information. Genotype-specific dosing regimens will have to be more precise and marketing strategies more prudent. However, not all variations in drug responses are related to pharmacogenetic polymorphisms. Drug response can be modulated by a number of non-genetic factors, especially co-medications and presence of concurrent diseases. Inappropriate prescribing frequently compounds the complexity introduced by these two important non-genetic factors. Unless prescribers adhere to the prescribing information, much of the benefits of pharmacogenetics will be squandered. Discovering highly predictive genotype-phenotype associations during drug development and demonstrating their clinical validity and utility in well-designed prospective clinical trials will no doubt better define the role of pharmacogenetics in future clinical practice. In the meantime, prescribing should comply with the information provided while pharmacogenetic research is deservedly supported by all concerned but without unrealistic expectations.  相似文献   

10.
The objective of this study was to assess how the dosing method (i.e., gavage versus diet) affects the absorption and disposition of lovastatin, as well as its effect on two biological markers of exposure, such as serum levels of cholesterol and triglycerides. In preclinical safety studies the test agent is normally administered by gavage, but in chemoprevention efficacy studies the test agent is usually administered with the diet. Therefore, extrapolation of safety and efficacy data from laboratory animals to humans should consider the influence of the method of administration on the absorption, disposition and effect of the drug. Lovastatin, a blood cholesterol-lowering drug with a short elimination half-life in humans, was used to assess the influence of two different dosing methods on the drug pharmacokinetics and pharmacodynamics. Plasma and liver concentrations of lovastatin and its active metabolite lovastatin-Na were measured in female rats at sequential times after administration. Serum concentrations of triglycerides and cholesterol were measured at similar times and used as biomarkers of effect. Significant differences in pharmacokinetics and pharmacodynamics were observed after administration of lovastatin by the two oral dosing paradigms. In general, oral gavage resulted in higher peak and lower trough concentrations of lovastatin and lovastatin-Na in plasma and liver, lower area under the concentration-time curve of lovastatin-Na in plasma and liver, and less of an effect on the serum concentrations of triglycerides and cholesterol than the corresponding diet dosing. Although no inverse linear relationship was observed between pharmacokinetic and pharmacodynamic markers, in the case of serum cholesterol a visual trend could be observed which might have proven significant had data from a larger number of dose levels been available. As in our previous study with sulindac, this study illustrates potential limitations in trying to extrapolate from data obtained using different dosing schemes to potential safety and efficacy in humans.  相似文献   

11.
This review summarizes recent literature for applying pharmacogenomics to antifungal selection and dosing, providing an approach to implementing antifungal pharmacogenomics in clinical practice. The Clinical Pharmacogenetics Implementation Consortium published guidelines on CYP2C19 and voriconazole, with recommendations to use alternative antifungals or adjust voriconazole dose with close therapeutic drug monitoring (TDM). Recent studies demonstrate an association between CYP2C19 phenotype and voriconazole levels, clinical outcomes, and adverse events. Additionally, CYP2C19-guided preemptive dose adjustment demonstrated benefit in two prospective studies for prophylaxis. Pharmacokinetic–pharmacodynamic modeling studies have generated proposed voriconazole treatment doses based on CYP2C19 phenotypes, with further validation studies needed. Sufficient evidence is available for implementing CYP2C19-guided voriconazole selection and dosing among select patients at risk for invasive fungal infections. The institution needs appropriate infrastructure for pharmacogenomic testing, integration of results in the clinical decision process, with TDM confirmation of goal trough achievement, to integrate antifungal pharmacogenomics into routine clinical care.  相似文献   

12.
Personalized medicine, in modern drug therapy, aims at a tailored drug treatment accounting for inter-individual variations in drug pharmacology to treat individuals effectively and safely. The inter-individual variability in drug response upon drug administration is caused by the interplay between drug pharmacology and the patients’ (patho)physiological status. Individual variations in (patho)physiological status may result from genetic polymorphisms, environmental factors (including current/past treatments), demographic characteristics, and disease related factors. Identification and quantification of predictors of inter-individual variability in drug pharmacology is necessary to achieve personalized medicine. Here, we highlight the potential of pharmacometabolomics in prospectively informing on the inter-individual differences in drug pharmacology, including both pharmacokinetic (PK) and pharmacodynamic (PD) processes, and thereby guiding drug selection and drug dosing. This review focusses on the pharmacometabolomics studies that have additional value on top of the conventional covariates in predicting drug PK. Additionally, employing pharmacometabolomics to predict drug PD is highlighted, and we suggest not only considering the endogenous metabolites as static variables but to include also drug dose and temporal changes in drug concentration in these studies. Although there are many endogenous metabolite biomarkers identified to predict PK and more often to predict PD, validation of these biomarkers in terms of specificity, sensitivity, reproducibility and clinical relevance is highly important. Furthermore, the application of these identified biomarkers in routine clinical practice deserves notable attention to truly personalize drug treatment in the near future.  相似文献   

13.
There are many factors that can influence the pharmacokinetics (PK) of a mAb or Fc-fusion molecule with the primary determinant being FcRn-mediated recycling. Through Fab or Fc engineering, IgG-FcRn interaction can be used to generate a variety of therapeutic antibodies with significantly enhanced half-life or ability to remove unwanted antigen from circulation. Glycosylation of a mAb or Fc-fusion protein can have a significant impact on the PK of these molecules. mAb charge can be important and variants with pI values of 1–2 unit difference are likely to impact PK with lower pI values being favorable for a longer half-life. Most mAbs display target mediated drug disposition (TMDD), which can have significant consequences on the study designs of preclinical and clinical studies. The PK of mAb can also be influenced by anti-drug antibody (ADA) response and off-target binding, which require careful consideration during the discovery stage. mAbs are primarily absorbed through the lymphatics via convection and can be conveniently administered by the subcutaneous (sc) route in large doses/volumes with co-formulation of hyaluronidase. The human PK of a mAb can be reasonably estimated using cynomolgus monkey data and allometric scaling methods.  相似文献   

14.
Deni Hardiansyah 《MABS-AUSTIN》2018,10(7):1144-1156
The aim of this study was to investigate neonatal Fc receptor (FcRn) concentration developmental pharmacology in adult and pediatric subjects using minimal physiologically-based pharmacokinetic (mPBPK) modelling. Three types of pharmacokinetic (PK) data for three agents (endogenous/exogenous native IgG, bevacizumab and palivizumab) were used. The adult group contained six subjects with weights from 50 to 100 kg. For pediatric subjects, seven age groups were assumed, with five subjects each having the weight of 95%, 75%, 50%, 25% and 5% percentile of the population. A first evidence-based rating system to evaluate the quality of the source data used to derive pediatric-specific mPBPK model parameter was proposed. A stepwise approach was used to examine the best combination of age/weight effect on the parameters of the mPBPK model in adult and pediatric subjects. IgG synthesis rate (Ksyn), extravasation rate (ER) and FcRn were fitted simultaneously to the PK of bevacizumab and native-IgG in both adult and pediatric. All fitting showed good fits based on the graphs and the coefficient of variation of the fitted parameters (< 50%). Estimated weight-normalized Ksyn increased while weight-normalized FcRn and ER decreased with increasing age. The age and weight effect on FcRn were successfully estimated from the data. The final mPBPK model developed with native IgG and bevacizumab was able to predict the PK of palivizumab in pediatric subjects. Implementation of the mPBPK model enables us to analyze the relationships of age, weight, FcRn, ER and Ksyn in both adult and pediatric subject. This information may benefit the understanding of complex interaction between the FcRn developmental pharmacology and PK parameters, and improve the prediction of the antibody disposition in pediatric subjects.  相似文献   

15.
Adverse drug reactions are common in persons aged 65 and older and are associated with increased morbidity and mortality. A heightened susceptibility to adverse reactions is due to a number of factors, including an increased incidence of disease, multiple drug use, and altered pharmacokinetic and pharmacodynamic properties of many drugs. The risk of drug interactions increases with the number of medications taken. Adverse drug reactions can be prevented through prudent prescribing practices, patient education, and adequate monitoring of drug efficacy and side effects. Several types of medications are of particular concern, including many antihypertensive agents, drugs with anticholinergic effects, psychoactive medications, and nonsteroidal anti-inflammatory drugs. Some drugs, such as histamine H2-receptor antagonists, are relatively safe but are overprescribed. Data regarding the risks associated with these problem drugs are presented, with recommendations for safe and effective treatment alternatives.  相似文献   

16.

Objective:

Obesity is a public health problem, which increases the risk of chronic diseases and mortality. Weight loss can reduce mortality and improve most of the detrimental health consequences of obesity.

Design and Methods:

This paper was developed from two presentations to the US Food and Drug Administration (FDA), which has responsibility for reviewing and approving drugs to treat obesity.

Results:

A weight loss of 5% or more is sufficient to significantly reduce health risks in individuals with impaired glucose tolerance, hypertension, or nonalcoholic fatty liver disease. Slightly more weight loss (16% on average, achieved by surgery) reduces mortality. The goal of medicating for obesity is to help more patients achieve more weight loss. A barrier to drug approval has been the concern that weight loss medications might be used by individuals with little or no health risks, thus mandating a low side effect profile for approval of any drug. This limits the options for patients who have obesity‐related health problems that could improve with weight loss. Recently the FDA signaled interest in identifying health benefits in higher risk patients that might justify medications with higher risk; however, the potential impact on a large segment of the population has led the FDA to consider requiring a cardiovascular outcome trial for all obesity medications, either prior to or after approval.

Conclusion:

This review argues that drugs are needed for obesity because they enhance behaviorally induced weight loss and that new medications for obesity are needed in the approval process.  相似文献   

17.
A thorough understanding of drug metabolism and disposition can aid in the assessment of efficacy and safety. However, analytical methods used in pharmacokinetics (PK) studies of protein therapeutics are usually based on ELISA, and therefore can provide a limited perspective on the quality of the drug in concentration measurements. Individual post-translational modifications (PTMs) of protein therapeutics are rarely considered for PK analysis, partly because it is technically difficult to recover and quantify individual protein variants from biological fluids. Meanwhile, PTMs may be directly linked to variations in drug efficacy and safety, and therefore understanding of clearance and metabolism of biopharmaceutical protein variants during clinical studies is an important consideration. To address such challenges, we developed an affinity-purification procedure followed by peptide mapping with mass spectrometric detection, which can profile multiple quality attributes of therapeutic antibodies recovered from patient sera. The obtained data enable quantitative modeling, which allows for simulation of the PK of different individual PTMs or attribute levels in vivo and thus facilitate the assessment of quality attributes impact in vivo. Such information can contribute to the product quality attribute risk assessment during manufacturing process development and inform appropriate process control strategy.  相似文献   

18.
Findings of a recent clinical study showed indomethacin has lower plasma levels and higher steady-state apparent clearance in pregnant subjects when compared to those in non-pregnant subjects reported in separate studies. Thus, in the current work we developed a pregnancy physiological based pharmacokinetic/pharmacodynamic (PBPK/PD) model for indomethacin to explain the differences in indomethacin pharmacokinetics between pregnancy and non-pregnancy. A whole-body PBPK model with key pregnancy-related physiological changes was developed to characterize indomethacin PK in pregnant women and compare these parameters to those in non-pregnant subjects. Data related to maternal physiological and biological changes were obtained from literature and incorporated into the structural PBPK model that describes non-pregnant PK data. Changes in indomethacin area under the curve (AUC), maximum concentration (Cmax) and average steady-state concentration (Cave) in pregnant women were predicted. Model-simulated PK profiles were in agreement with observed data. The predicted mean ratio (non-pregnant:second trimester (T2)) of indomethacin Cave was 1.6 compared to the observed value of 1.59. In addition, the predicted steady-state apparent clearance (CL/Fss) ratio was almost similar to the observed value (0.46 vs. 0.42). Sensitivity analysis suggested changes in CYP2C9 activity, and to a lesser extent UGT2B7, as the primary factor contributing to differences in indomethacin disposition between pregnancy and non-pregnancy. The developed PBPK model which integrates prior physiological knowledge, in vitro and in vivo data, allowed the successful prediction of indomethacin disposition during T2. Our PBPK/PD model suggested a higher indomethacin dosing requirement during pregnancy.  相似文献   

19.
A multi-type branching process with varying environment was used to construct a pharmacokinetic/pharmacodynamic (PK/PD) model that captures the postantibiotic effect (PAE) seen in bacterial populations after exposure of antibiotics. This phenomenon of continued inhibition of bacterial growth even after removal of the antibiotic from the growth medium is of high relevance in the context of optimizing dosing regimens. The clinical implication of long PAEs lies in the interesting possibility of increasing the intervals between drug administrations.The model structure is generalizable to most types of antibiotics and is useful both as a theoretical framework for understanding the time properties of PAE and to explore optimal antibiotic dosing regimens. Data from an in vitro study with Escherichia coli exposed to different dosing regimens of cefotaxime were used to evaluate the model.  相似文献   

20.
Variability in drug intake is increasingly recognized as a major source of variability in drug response. The non-uniform access to medicated feed, influenced by swine individual feeding behaviour, is a determinant of antibiotic exposure, recalling the intrinsic similarity with human compliance to drug regimens. In this paper, we developed a feeding behaviour-pharmacokinetic (FBPK) model of in-feed chlortetracycline (CTC) and established, in a definite way, the effect of feeding behaviour and its induced pharmacokinetic (PK) variability. Based on reported animal behaviour, we mathematically formulated swine feeding behaviour by incorporating its main characteristics: intense feeding periods that repeat on a daily basis and random feeding periods of free access to feed, along with growth stage factors. This behaviour model was then integrated into a PK model of CTC. Moreover, we analysed the effect of each feeding behaviour component and assessed the corresponding PK variability. We have been able to delineate the impact of different feeding behaviour components and characterize the induced PK variability. We have compared different therapeutic assumptions to our model and shown that random features underlying the feeding behaviour have dramatic influence on the PK variability. A practical tool to adopt the dosing regimen in terms of dose and age has been proposed. The method developed here can be generalized to other therapeutic contexts and incorporated into medical practice, particularly to make long-term projections of drug-intake behaviour, to explain possible treatment failure and guide practitioners in adjusting the dosing regimen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号