首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleus pulposus (NP) of the intervertebral disc functions to provide compressive load support in the spine, and contains cells that play a critical role in the generation and maintenance of this tissue. The NP cell population undergoes significant morphological and phenotypic changes during maturation and aging, transitioning from large, vacuolated immature cells arranged in cell clusters to a sparse population of smaller, isolated chondrocyte-like cells. These morphological and organizational changes appear to correlate with the first signs of degenerative changes within the intervertebral disc. The extracellular matrix of the immature NP is a soft, gelatinous material containing multiple laminin isoforms, features that are unique to the NP relative to other regions of the disc and that change with aging and degeneration. Based on this knowledge, we hypothesized that a soft, laminin-rich extracellular matrix environment would promote NP cell-cell interactions and phenotypes similar to those found in immature NP tissues. NP cells were isolated from porcine intervertebral discs and cultured in matrix environments of varying mechanical stiffness that were functionalized with various matrix ligands; cellular responses to periods of culture were assessed using quantitative measures of cell organization and phenotype. Results show that soft (<720 Pa), laminin-containing extracellular matrix substrates promote NP cell morphologies, cell-cell interactions, and proteoglycan production in vitro, and that this behavior is dependent upon both extracellular matrix ligand and substrate mechanical properties. These findings indicate that NP cell organization and phenotype may be highly sensitive to their surrounding extracellular matrix environment.  相似文献   

2.
Using agarose gel electrophoresis, we surveyed four strains of inbred mice (AKR/J, C57BL/J, LG/J, and SM/J) for 472 microsatellite loci. Agarose electrophoresis proved to be extremely efficient in separating alleles differing by six or more base pairs and detected a majority of allelic differences of between two and six base pairs. Overall, 64.4% of loci showed polymorphism among the four strains, and pairwise comparisons ranged from 42.1% to 48.1%. Microsatellite polymorphism for strains LG/J and SM/J has not been previously described and was sufficiently high (47.1%) to make these size-divergent strains excellent candidates for quantitative trait loci (QTL) analysis of normal growth.  相似文献   

3.
Intervertebral disc calcification and herniation commonly affects Dachshund where the predisposition is caused by an early onset degenerative process resulting in disc calcification. A continuous spectrum of disc degeneration is seen within and among dog breeds, suggesting a multifactorial etiology. The number of calcified discs at 2 years of age determined by a radiographic evaluation is a good indicator of the severity of disc degeneration and thus serves as a measure for the risk of developing intervertebral disc herniation. The aim of the study was to identify genetic variants associated with intervertebral disc calcification in Dachshund through a genome-wide association (GWA) study. Based on thorough radiographic examinations, 48 cases with ≥ 6 disc calcifications or surgically treated for disc herniation and 46 controls with 0-1 disc calcifications were identified. GWA using the Illumina CanineHD BeadChip identified a locus on chromosome 12 from 36.8 to 38.6 Mb with 36 markers reaching genome-wide significance (P(genome) = 0.00001-0.026). This study suggests that a major locus on chromosome 12 harbors genetic variations affecting the development of intervertebral disc calcification in Dachshund.  相似文献   

4.
Inbred mouse strains MRL and LG share the ability to fully heal ear hole punches with the full range of appropriate tissues without scarring. They also share a common ancestry, MRL being formed from a multi-strain cross with two final backcrosses to LG before being inbred by brother-sister mating. Many gene-mapping studies for healing ability have been performed using these two strains, resulting in the location of about 20 quantitative trait loci (QTLs). Here, we combine two of these crosses (N = 638), MRL/lpr × C57BL/6NTac and LG/J × SM/J, in a single combined cross analysis to increase the mapping power, decrease QTL support intervals, separate multiple QTLs and establish allelic states at individual QTL. The combined cross analysis located 11 QTLs, 6 affecting only one cross (5 LG × SM and 1 MRL × B6) and 5 affecting both crosses, approximately the number of common QTLs expected given strain SNP similarity. Amongst the five QTLs mapped in both crosses, three had significantly different genetic effects, additive in one cross and over or underdominant in the other. It is possible that allelic states at these three loci are different in SM and B6 because they lead to differences in dominance interactions with the LG and MRL alleles. QTL support intervals are 40% smaller in the combined cross analysis than in either of the single crosses. Combined cross analysis was successful in enhancing the interpretation of earlier QTL results for these strains.  相似文献   

5.
6.
Rejuvenation of nucleus pulposus cells (NPCs) in degenerative discs can reverse intervertebral disc degeneration (IDD). Partial reprogramming is used to rejuvenate aging cells and ameliorate progression of aging tissue to avoiding formation of tumors by classical reprogramming. Understanding the effects and potential mechanisms of partial reprogramming in degenerative discs provides insights for development of new therapies for IDD treatment. The findings of the present study show that partial reprogramming through short‐term cyclic expression of Oct‐3/4, Sox2, Klf4, and c‐Myc (OSKM) inhibits progression of IDD, and significantly reduces senescence related phenotypes in aging NPCs. Mechanistically, short‐term induction of OSKM in aging NPCs activates energy metabolism as a “energy switch” by upregulating expression of Hexokinase 2 (HK2) ultimately promoting redistribution of cytoskeleton and restoring the aging state in aging NPCs. These findings indicate that partial reprogramming through short‐term induction of OSKM has high therapeutic potential in the treatment of IDD.  相似文献   

7.
Degenerative disc disease (DDD) of the cervical spine is common after middle age and can cause loss of disc height with painful nerve impingement, bone and joint inflammation. Despite the clinical importance of these problems, in current publications the pathology of cervical disc degeneration has been studied merely from a morphologic view point using magnetic resonance imaging (MRI), without addressing the issue of biological treatment approaches. So far a wide range of endogenously expressed bioactive factors in degenerative cervical disc cells has not yet been investigated, despite its importance for gene therapeutic approaches. Although degenerative lumbar disc cells have been targeted by different biological treatment approaches, the quantities of disc cells and the concentrations of gene therapeutic factors used in animal models differ extremely. These indicate lack of experimentally acquired data regarding disc cell proliferation and levels of target proteins. Therefore, we analysed proliferation and endogenous expression levels of anabolic, catabolic, ant-catabolic, inflammatory cytokines and matrix proteins of degenerative cervical disc cells in three-dimensional cultures. Preoperative MRI grading of cervical discs was used, then grade III and IV nucleus pulposus (NP) tissues were isolated from 15 patients, operated due to cervical disc herniation. NP cells were cultured for four weeks with low-glucose in collagen I scaffold. Their proliferation rates were analysed using 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide. Their protein expression levels of 28 therapeutic targets were analysed using enzyme-linked immunosorbent assay. During progressive grades of degeneration NP cell proliferation rates were similar. Significantly decreased aggrecan and collagen II expressions (P<0.0001) were accompanied by accumulations of selective catabolic and inflammatory cytokines (disintegrin and metalloproteinase with thrombospondin motifs 4 and 5, matrix metalloproteinase 3, interleukin-1β, interleukin-1 receptor) combined with low expression of anti-catabolic factor (metalloproteinase inhibitor 3) (P<0.0001). This study might contribute to inhibit inflammatory catabolism of cervical discs.  相似文献   

8.
Objective: To examine the differential response of obesity‐ and diabetes‐related traits to a high‐ or low‐fat diet in LG/J and SM/J mice. We also examined food consumption in these strains. Research Methods and Procedures: Mice were placed on a high‐ or low‐fat diet after weaning. Animals were weighed once per week and subjected to glucose tolerance tests at 20 weeks. At sacrifice, fat pads and internal organs were removed along with serum samples. For food consumption, LG/J and SM/J mice of each sex were assigned to a high‐fat or low‐fat diet after reaching maturity. Mice were weighed three times per week, and food consumed was determined by subtraction. Results: LG/J animals consume more total food, but SM/J animals consume more food per gram of body weight. LG/J mice grow faster to 10 weeks but slower from 10 to 20 weeks, have higher cholesterol and free fatty acid levels, and have lower basal glucose levels and better response to a glucose challenge than SM/J mice. For most traits, SM/J mice respond more strongly to a high‐fat diet than LG/J mice, including body weight and growth, basal glucose levels, organ weights, fat distribution, and circulating triglycerides and cholesterol levels. Discussion: Obesity‐related phenotypes, as well as response to increased dietary fat, differ genetically between LG/J and SM/J and can, therefore, be mapped. This study indicates that the cross of SM/J and LG/J mice would be an excellent model system for the study of gene‐by‐diet interaction in obesity.  相似文献   

9.
10.
Aging is one of the major etiological factors driving intervertebral disc (IVD) degeneration, the main cause of low back pain. The nucleus pulposus (NP) includes a heterogeneous cell population, which is still poorly characterized. Here, we aimed to uncover main alterations in NP cells with aging. For that, bovine coccygeal discs from young (12 months) and old (10–16 years old) animals were dissected and primary NP cells were isolated. Gene expression and proteomics of fresh NP cells were performed. NP cells were labelled with propidium iodide and analysed by flow cytometry for the expression of CD29, CD44, CD45, CD146, GD2, Tie2, CD34 and Stro-1. Morphological cell features were also dissected by imaging flow cytometry. Elder NP cells (up-regulated bIL-6 and bMMP1 gene expression) presented lower percentages of CD29+, CD44+, CD45+ and Tie2+ cells compared with young NP cells (upregulated bIL-8, bCOL2A1 and bACAN gene expression), while GD2, CD146, Stro-1 and CD34 expression were maintained with age. NP cellulome showed an upregulation of proteins related to endoplasmic reticulum (ER) and melanosome independently of age, whereas proteins upregulated in elder NP cells were also associated with glycosylation and disulfide bonds. Flow cytometry analysis of NP cells disclosed the existence of 4 subpopulations with distinct auto-fluorescence and size with different dynamics along aging. Regarding cell morphology, aging increases NP cell area, diameter and vesicles. These results contribute to a better understanding of NP cells aging and highlighting potential anti-aging targets that can help to mitigate age-related disc disease.  相似文献   

11.
With advancing age, injury, musculoskeletal pathology or a combination of these, a degenerative cascade of biomechanical, biochemical, and nutritional alterations diminish the intervertebral discs' ability to maintain its structure and function. While the biomechanics of isolated disc tissues has been investigated across this degenerative spectrum, none have attempted to retain the in situ disc-endplate morphology during compressive tissue characterization. The objective of this study was to spatially quantify the viscoelastic parameters of the intervertebral disc throughout degeneration, including the as yet unreported residual stress/strain. This required the development of a hybrid confined/in situ indentation methodology, which preserves the disc structural morphology. At four locations of the disc (anterior-AF, right and left lateral AF, and NP) stress-relaxation tests were performed using the hybrid confined/in situ indentation method, which utilizes the vertebral endplate as the porous indenter tip. This method allows the endplate to remain interwoven with the disc tissue, retaining its native orientation. Healthy disc tissue exhibited significantly higher residual stress values compared to both moderate and severe degeneration in all locations (p<0.0156). Furthermore, the equilibrium stress at 15% strain (stress relaxation) was significantly diminished with advancing disc degeneration (p<0.0241). The equilibrium viscoelastic parameters show healthy discs encounter higher forces at the same strain level, and are able to maintain this force, where degenerated discs are unable to maintain this force throughout time. This morphology-conserved method provides insight into the spatial compressive mechanical properties of the intervertebral disc across the degeneration spectrum and will aid in modeling these tissue changes.  相似文献   

12.
13.
SM/J liver arylsulfatase B has a more rapid electrophoretic mobility and occurs as a series of more acidic isozymes following electrofocusing in narrow pH gradients than the liver enzyme from C57BL/6J mice. The SM/J and C57BL/6J electrofocusing patterns were both converted to a single isozyme with similar isoelectric points by pretreatment with neuraminidase, suggesting that the SM/J and C57BL/6J isozymes differed with respect to their sialic acid content. Arylsulfatase B electrofocusing and thermostability phenotypes segregated independently among progeny of SM/J×C57BL/6J crosses, suggesting that the electrofocusing phenotypes were not determined by different alleles at As-1, the putative structural locus for arylsulfatase B. Comparison of the joint segregation of hepatic acid phosphatase electrophoretic patterns and liver arylsulfatase B electrofocusing profiles revealed that the electrofocusing profiles may be determined by a region on chromosome 17 near or identical to Apl. Kidney, brain, and spleen arylsulfatase B electrofocusing patterns did not appear to differ between SM/J and C57BL/6J mice.This research was supported in part by Biomedical Sciences Research Support Grant RR-07030, by NIGMS Grant 1-RO1GM27707-01, and by Grant 1–570 from the National Foundation/March of Dimes.  相似文献   

14.
15.
Painful degenerative disc diseases have been targeted by different biological treatment approaches. Nucleus pulposus (NP) cells play a central role in intervertebral disc (IVD) maintenance by orchestrating catabolic, anabolic and inflammatory factors that affect the extracellular matrix. IVD degeneration is associated with imbalances of these factors, resulting in a catabolic inflammatory metabolism. Therefore, accurate knowledge about their quantity and quality with regard to matrix synthesis is vital for a rational gene therapeutic approach. NP cells were isolated from 63 patients operated due to lumbar disc herniation (mean age 56 / range 29 - 84 years). Then, three-dimensional culture with low-glucose was completed in a collagen type I scaffold for four weeks. Subsequently cell proliferation evaluation was performed using 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide and intracellular concentration of 28 endogenously expressed anabolic, catabolic, inflammatory factors and relevant matrix proteins was determined by enzyme-linked immunosorbent assay. Specimen-related grades of degeneration were confirmed by preoperative magnetic resonance imaging. Independent from gender, age and grade of degeneration proliferation rates remained similar in all groups of NP cells. Progressive grades of degeneration, however, showed a significant influence on accumulation of selective groups of factors such as disintegrin and metalloproteinase with thrombospondin motifs 4 and 5, matrix metalloproteinase 3, metalloproteinase inhibitor 1 and 2, interleukin-1β and interleukin-1 receptor. Along with these changes, the key NP matrix proteins aggrecan and collagen II decreased significantly. The concentration of anabolic factors bone morphogenetic proteins 2, 4, 6 and 7, insulin-like growth factor 1, transforming growth factor beta 1 and 3, however, remained below the minimal detectable quantities. These findings indicate that progressive degenerative changes in NP may be problematic with regard to biologic treatment strategies. Hence, gene therapeutic interventions regulating relevant bioactive factors identified in this work might contribute to the development of regenerative treatment approaches for degenerative disc diseases.  相似文献   

16.
Large numbers of spontaneously occurring polypoid or slightly elevated lesions were observed in the tongue, mainly the dorsum linguae near the margo linguae, of DBA mice. Histologically the lesion consisted of granulation tissue with focal calcification, and involved superficially the tongue muscle. Often the calcareous deposits were encircled by multinuclear giant cells. The frequency of the calcified tongue lesion was high in lines of DBA/2 (DBA/2NCrj, DBA/2NJcl and DBA/2J), and DBA/1 (DBA/1Jcl and DBA/1J); the SM/J, BALB/c, C57BL/6 and C3H/He strains did not have the lesion. Among hybrid mice, CDF1, a hybrid of DBA/2 and BALB/c, a few had the lesions but no BDF1 mice, a hybrid of DBA/2 and C57BL/6, had any. The frequency was high in the hybrids of DBA/1 and SM/J. These results seem to indicate that the occurrence of the tongue calcified lesions was controlled by polygene.  相似文献   

17.
The linkages of the isozyme genes Mod-2, Pgm-2, and Dip-1 have been determined in tests with established linkage group markers among inbred strains of mice. Unique alleles for both Mod-2 and Pgm-2 have been observed in the strain of SM/J. Linkage was determined from backcross progeny of the matings C57BL/6J×(SM/J×C57BL/6J)F1, (SM/J×SWR/J)F1×SM/J, and (SM/J×SWR/J)F1×SJL/J. The gene Mod-2 is on linkage group 1. In a three-point cross of the loci Gpi-1, c, and Mod-2, the c locus was determined to be the middle gene. No double crossovers were observed. Our combined data show the following linkages: Gpi-1 to c, 28.3±3.2%; Gpi-1 to Mod-2, 33.3±3.0%; and c to Mod-2, 4.1±2.8%. The proposed gene order for four markers on LG I is Gpi-1-p-c-Mod-2. The gene Pgm-2 was linked to Gpd-1 (27.0±4.2%) on LGVIII. Two backcrosses segregating for Pgm-2 and b, (SM/J×DBA/2J) F1×DBA/2J and (SM/J×DBA/2J)F1×C57BR/cdJ, showed 9.1±4.3% recombination. The proposed gene order on LG VIII is b-Pgm-2-Gpd-1. The genes Pgm-1 and Pgm-2 are not linked (53.4±4.4%). Linkage of the isozyme genes Dip-1 and Id-1 on LG XIII was observed in backcross progeny of the crosses (SJL/J×C57BL/6J)F1×SJL/J and C57BL/6J×(SM/J×C57BL/6J)F1. The combined recombination was 23.8±2.8%. Two cases are established where genes whose enzyme products share substrate affinities (Pgm-1 and Pgm-2; Mod-1 and Mod-2) are not linked. Our data generally support the conclusion that functionally or metabolically related isozyme genes are not contiguous on mouse linkage groups.This investigation was supported in part by Public Health Service General Research Support Grant GM-09966 and in part by Public Health Service Training Grant 5T01 HD-00032-07 from the National Institute of Child Health and Human Development, and by Atomic Energy Commission contract AT(30-1)-3671.  相似文献   

18.
Mouse strains have been divided into 'tasters' and 'non-tasters' based on their relatively high and low preference, respectively, for low concentrations of sucrose and saccharin. These phenotypic differences appear to be due to a polymorphism in the gene at the Sac locus encoding for the T1R3 taste receptor selectively affecting the functionality of the T1R2+3 heterodimer. To psychophysically examine whether these phenotypes are due to sensory sensitivity as opposed to hedonic responsiveness, we measured taste signal detection of sucrose, glucose, and glycine by Sac taster (C57BL/6J and SWR/J) and non-taster (129P3/J and DBA/2J) strains in an operant conditioning paradigm using a gustometer. The taster mice had lower detection thresholds for sucrose and glucose compared with the non-taster mice. The detection thresholds corresponded well with reported responsiveness to low concentrations of these sugars in two-bottle intake tests suggesting that the Sac taster phenotype has a sensory basis and is not simply a matter of strain differences in the hedonic evaluation of weak intensities of the stimuli. Taster status did not entirely account for the strain differences in detection thresholds for glycine, a 'sweet' tasting amino acid. Collapsed across strains, detection thresholds for sucrose and glucose were highly correlated with each other (r = 0.81), but only modestly correlated with those for glycine (r < or = 0.43). This suggests that stimulus processing of glycine in the perithreshold intensity domain can be dissociated from that of sucrose and glucose. The mechanism underlying this difference may be related to the ability of glycine to bind with the T1R1+3 heterodimer.  相似文献   

19.
A hallmark of early IVD degeneration is a decrease in proteoglycan content. Progression will eventually lead to matrix degradation, a decrease in weight bearing capacity and loss of disc height. In the final stages of IVD degradation, fissures appear in the annular ring allowing extrusion of the NP. It is crucial to understand the interplay between mechanobiology, disc composition and metabolism to be able to provide exercise recommendations to patients with early signs of disc degeneration. This study evaluates the effect of physiological loading compared to no loading on matrix homeostasis in bovine discs with induced degeneration. Bovine discs with trypsin-induced degeneration were cultured for 14 days in a bioreactor under dynamic loading with maintained metabolic activity. Chondroadherin abundance and structure was used to confirm that a functional matrix was preserved in the chosen loading environment. No change was observed in chondroadherin integrity and a non-significant increase in abundance was detected in trypsin-treated loaded discs compared to unloaded discs. The proteoglycan concentration in loaded trypsin-treated discs was significantly higher than in unloaded disc and the newly synthesised proteoglycans were of the same size range as those found in control samples. The proteoglycan showed an even distribution throughout the NP region, similar to that of control discs. Significantly more newly synthesised type II collagen was detected in trypsin-treated loaded discs compared to unloaded discs, demonstrating that physiological load not only stimulates aggrecan production, but also that of type II collagen. Taken together, this study shows that dynamic physiological load has the ability to repair the extracellular matrix depletion typical of early disc degeneration.  相似文献   

20.
We recently have found that apolipoprotein E-deficient (Apoe-/-) mice with the C57BL/6 background develop type 2 diabetes when fed a Western diet for 12 weeks. In the present study we constructed multiple Apoe-/- mouse strains to find diabetes-related phenotyptic variations that might be linked to atherosclerosis development. Evaluation of both early and advanced lesion formation in aortic root revealed that C57BL/6, SWR/J, and SM/J Apoe-/- mice were susceptible to atherosclerosis and that C3H/HeJ and BALB/cJ Apoe-/- mice were relatively resistant. On a chow diet, fasting plasma glucose varied among strains with C3H/HeJ having the highest (171.1 ± 9.7 mg/dl) and BALB/cJ the lowest level (104.0 ± 6.6 mg/dl). On a Western diet, fasting plasma glucose rose significantly in all strains, with C57BL/6, C3H/HeJ and SWR/J exceeding 250 mg/dl. BALB/cJ and C3H/HeJ were more tolerant to glucose loading than the other 3 strains. C57BL/6 was sensitive to insulin while other strains were not. Non-fasting blood glucose was significantly lower in C3H/HeJ and BALB/cJ than C57BL/6, SM/J, and SWR/J. Glucose loading induced the 1st and the 2nd phase of insulin secretion in BALB/cJ, but the 2nd phase was not observed in other strains. Morphological analysis showed that BALB/cJ had the largest islet area (1,421,493 ± 61,244 μm2) and C57BL/6 had the smallest one (747,635 ± 41,798 μm2). This study has demonstrated strain-specific variations in the metabolic and atherosclerotic phenotypes, thus laying the basis for future genetic characterization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号