首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zn72D encodes the Drosophila zinc finger protein Zn72D. It was first identified to be involved in phagocytosis and indicated to have a role in immunity. Then it was demonstrated to have a function in RNA splicing and dosage compensation in Drosophila melanogaster. In this study, we discovered a new function of Zn72D in male fertility. We showed that knockdown of Zn72D in fly testes caused an extremely low egg hatch rate. Immunofluorescence staining of Zn72D knockdown testes exhibited scattered spermatid nuclei and no actin cones or individualization complexes (ICs) during spermiogenesis, whereas the early‐stage germ cells and the spermatocytes were observed clearly. There were no mature sperms in the seminal vesicles of Zn72D knockdown fly testes, although a few sperms could be found close to the seminal vesicle. We further showed that many cytoskeleton‐related genes were significantly downregulated in fly testes due to Zn72D knockdown. Taken together these findings suggest that Zn72D may have an important function in spermatogenesis by sustaining the cytoskeleton‐based morphogenesis and individualization thus ensuring the proper formation of sperm in D. melanogaster.  相似文献   

2.
Symbionts and parasites can manipulate their hosts’ reproduction to their own benefit, profoundly influencing patterns of mate choice and evolution of the host population. Wolbachia is one of the most widespread symbionts among arthropods, and one that alters its hosts’ reproduction in diverse and dramatic ways. While we are beginning to appreciate how Wolbachia's extreme manipulations of host reproduction can influence species diversification and reproductive isolation, we understand little about how symbionts and Wolbachia, in particular, may affect intrapopulation processes of mate choice. We hypothesized that the maternally transmitted Wolbachia would increase the attractiveness of its female hosts to further its own spread. We therefore tested the effects of Wolbachia removal and microbiome disruption on female attractiveness and male mate choice among ten isofemale lines of Drosophila melanogaster. We found variable effects of general microbiome disruption on female attractiveness, with indications that bacteria interact with hosts in a line‐specific manner to affect female attractiveness. However, we found no evidence that Wolbachia influence female attractiveness or male mate choice among these lines. Although the endosymbiont Wolbachia can greatly alter the reproduction of their hosts in many species, there is no indication that they alter mate choice behaviours in D. melanogaster.  相似文献   

3.
Wolbachia is a group of intracellular symbiotic bacteria that widely infect arthropods and nematodes. Wolbachia infection can regulate host reproduction with the most common phenotype in insects being cytoplasmic incompatibility (CI), which results in embryonic lethality when uninfected eggs fertilized with sperms from infected males. This suggests that CI-induced defects are mainly in paternal side. However, whether Wolbachia-induced metabolic changes play a role in the mechanism of paternal-linked defects in embryonic development is not known. In the current study, we first use untargeted metabolomics method with LC-MS to explore how Wolbachia infection influences the metabolite profiling of the insect hosts. The untargeted metabolomics revealed 414 potential differential metabolites between Wolbachia-infected and uninfected 1-day-old (1d) male flies. Most of the differential metabolites were significantly up-regulated due to Wolbachia infection. Thirty-four metabolic pathways such as carbohydrate, lipid and amino acid, and vitamin and cofactor metabolism were affected by Wolbachia infection. Then, we applied targeted metabolomics analysis with GC-MS and showed that Wolbachia infection resulted in an increased energy expenditure of the host by regulating glycometabolism and fatty acid catabolism, which was compensated by increased food uptake. Furthermore, overexpressing two acyl-CoA catabolism related genes, Dbi (coding for diazepam-binding inhibitor) or Mcad (coding for medium-chain acyl-CoA dehydrogenase), ubiquitously or specially in testes caused significantly decreased paternal-effect egg hatch rate. Oxidative stress and abnormal mitochondria induced by Wolbachia infection disrupted the formation of sperm nebenkern. These findings provide new insights into mechanisms of Wolbachia-induced paternal defects from metabolic phenotypes.  相似文献   

4.
Wolbachia pipientis is a widespread endosymbiont of insects and other arthropods exerting a wide range of biological effects on their hosts. A growing number of recent studies document the influence of Wolbachia on reproduction and lifespan of insect host species. However, little is known regarding effects of Wolbachia on the demographic traits of different host populations. Moreover, whether different Wolbachia strains exert different effects on fitness components of their hosts remains largely unknown. We studied the effects of (a) the Wolbachia strain wCer2 on fitness components of two laboratory lines of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae) and (b) two different Wolbachia strains (wCer2 and wCer4) on one of the Mediterranean fruit fly lines. Wolbachia infection (wCer2) shortens the egg‐to‐adult developmental duration of both C. capitata lines, although it prolongs embryonic development. In one of the two lines, egg‐to‐adult mortality increased. Wolbachia infection shortens adult lifespan (to a different extent in males and females) and reduces female fecundity. The different Wolbachia strains differentially affect both immature mortality and developmental duration, and adult longevity and female fecundity. Our findings demonstrate both differential response of two C. capitata lines to Wolbachia infection and differential effects of two Wolbachia strains on the same Mediterranean fruit fly line. Practical and theoretical implications of our findings are discussed.  相似文献   

5.
Resistance against parasites may play a role in female mate choice, especially if males that have actually survived parasitism can be discriminated from males that have not been parasitised. Larvae of several Drosophila species are subject to attack by hymenopteran parasitoids, but have the ability to kill the parasitoid egg through the process of encapsulation. Because an encapsulated egg remains visible in the abdomen of the adult fly throughout its life, its presence in a male signals to a female that the male has the genes to survive parasitism. The hypothesis that females preferentially mate with males bearing an encapsulated egg in their abdomen was tested using D. melanogaster. No indication was found for this female preference. The absence of preference for males with “good genes” could result from sensory constraints in the female or a negative correlation between encapsulation ability and some other fitness component. Alternatively, it is hypothesised that the black abdominal ends of the males of many species in the melanogaster-group evolved to mimic encapsulated eggs, leading to the breakdown of capsule recognition by the female.  相似文献   

6.
Although females are traditionally thought of as the choosy sex, there is increasing evidence in many species that males will preferentially court or mate with certain females over others when given a choice. In the fruit fly, Drosophila melanogaster, males discriminate between potential mating partners based on a number of female traits, including species, mating history, age, and condition. Interestingly, many of these male preferences are affected by the male''s previous sexual experiences, such that males increase courtship toward types of females that they have previously mated with and decrease courtship toward types of females that have previously rejected them. Dmelanogaster males also show courtship and mating preferences for larger females over smaller females, likely because larger females have higher fecundity. It is unknown, however, whether this preference shows behavioral plasticity based on the male''s sexual history as we see for other male preferences. Here, we manipulate the sexual experience of Dmelanogaster males and test whether this manipulation has any effect on the strength of male mate choice for large females. We find that sexually inexperienced males have a robust courtship preference for large females that is unaffected by previous experience mating with, or being rejected by, females of differing sizes. Given that female body size is one of the most common targets of male mate choice across insect species, our experiments with Dmelanogaster may provide insight into how these preferences develop and evolve.  相似文献   

7.
Maternally transmitted Wolbachia bacteria infect about half of all insect species. Many Wolbachia cause cytoplasmic incompatibility (CI) and reduced egg hatch when uninfected females mate with infected males. Although CI produces a frequency‐dependent fitness advantage that leads to high equilibrium Wolbachia frequencies, it does not aid Wolbachia spread from low frequencies. Indeed, the fitness advantages that produce initial Wolbachia spread and maintain non‐CI Wolbachia remain elusive. wMau Wolbachia infecting Drosophila mauritiana do not cause CI, despite being very similar to CI‐causing wNo from Drosophila simulans (0.068% sequence divergence over 682,494 bp), suggesting recent CI loss. Using draft wMau genomes, we identify a deletion in a CI‐associated gene, consistent with theory predicting that selection within host lineages does not act to increase or maintain CI. In the laboratory, wMau shows near‐perfect maternal transmission; but we find no significant effect on host fecundity, in contrast to published data. Intermediate wMau frequencies on the island of Mauritius are consistent with a balance between unidentified small, positive fitness effects and imperfect maternal transmission. Our phylogenomic analyses suggest that group‐B Wolbachia, including wMau and wPip, diverged from group‐A Wolbachia, such as wMel and wRi, 6–46 million years ago, more recently than previously estimated.  相似文献   

8.
Zheng Y  Ren PP  Wang JL  Wang YF 《PloS one》2011,6(4):e19512

Background

Wolbachia are obligate endosymbiotic bacteria that infect numerous species of arthropods and nematodes. Wolbachia can induce several reproductive phenotypes in their insect hosts including feminization, male-killing, parthenogenesis and cytoplasmic incompatibility (CI). CI is the most common phenotype and occurs when Wolbachia-infected males mate with uninfected females resulting in no or very low numbers of viable offspring. However, matings between males and females infected with the same strain of Wolbachia result in viable progeny. Despite substantial scientific effort, the molecular mechanisms underlying CI are currently unknown.

Methodology/Principal Findings

Gene expression studies were undertaken in Drosophila melanogaster and D. simulans which display differential levels of CI using quantitative RT-PCR. We show that Hira expression is correlated with the induction of CI and occurs in a sex-specific manner. Hira expression is significantly lower in males which induce strong CI when compared to males inducing no CI or Wolbachia-uninfected males. A reduction in Hira expression is also observed in 1-day-old males that induce stronger CI compared to 5-day-old males that induce weak or no CI. In addition, Hira mutated D. melanogaster males mated to uninfected females result in significantly decreased hatch rates comparing with uninfected crosses. Interestingly, wMel-infected females may rescue the hatch rates. An obvious CI phenotype with chromatin bridges are observed in the early embryo resulting from Hira mutant fertilization, which strongly mimics the defects associated with CI.

Conclusions/Significance

Our results suggest Wolbachia-induced CI in Drosophila occurs due to a reduction in Hira expression in Wolbachia-infected males leading to detrimental effects on sperm fertility resulting in embryo lethality. These results may help determine the underlying mechanism of CI and provide further insight in to the important role Hira plays in the interaction of Wolbachia and its insect host.  相似文献   

9.
Wolbachia is an endosymbiont prevalent in arthropods. To maximize its transmission thorough the female germline, Wolbachia induces in infected hosts male‐to‐female transformation, male killing, parthenogenesis, and cytoplasmic incompatibility, depending on the host species and Wolbachia strain involved. However, the molecular mechanisms underlying these host manipulations by Wolbachia remain largely unknown. The Wolbachia strain wMel, an inhabitant of Drosophila melanogaster, impairs host oogenesis only when transplanted into a heterologous host, for example, Drosophila simulans. We found that egg polarity defects induced by wMel infection in D. simulans can be recapitulated in the natural host D. melanogaster by transgenic overexpression of a variant of the Wolbachia protein Toxic manipulator of oogenesis (TomO), TomOwMel?HS, in the female germline. RNA immunoprecipitation assays demonstrated that TomO physically associates with orb mRNA, which, as a result, fails to interact with the translation repressor Cup. This leads to precocious translation of Orb, a posterior determinant, and thereby to the misspecification of oocytes and accompanying polarity defects. We propose that the ability of TomO to bind to orb mRNA might provide a means for Wolbachia to enter the oocyte located at the posterior end of the egg chamber, thereby accomplishing secure maternal transmission thorough the female germline.  相似文献   

10.
In many species, males increase their reproductive success by choosing high‐quality females. In natural populations, they interact with both virgin and mated females, which can store sperm in their spermatheca. Therefore, males elaborate strategies to avoid sperm competition. In the terrestrial isopod Armadillidium vulgare, females can store sperm and produce several clutches. Moreover, this species can be parasitized by Wolbachia, which feminizes genetic males, transforming them into functional females. Our study compared attractiveness and mate choice when a male is exposed to both virgin and experienced females (i.e., females who have produced offspring and rested for 6 months), with or without Wolbachia. Our results revealed that males are more attracted to virgin females than experienced females, even if these virgin females are parasitized. Moreover, the chemical analysis highlighted different odors in females according to their reproductive and infection (Wolbachia‐free or vertically Wolbachia‐infected) status. Males attempted copulation more frequently and for longer with virgin females, even if Wolbachia‐infected, while experienced females refused further copulation. The evolutionary consequences of both male choice and female resistance on their fitness are discussed in this study.  相似文献   

11.
The olive fruit fly Bactrocera oleae is responsible for worldwide economic damage. In this report, we describe the first B. oleae lines transinfected with the Wolbachia strain wCer2, an endosymbiont of the cherry fruit fly Rhagoletis cerasi. Immunostaining followed by confocal microscopy, detects high numbers of Wolbachia in embryos as well as in ovarioles and sperm from individuals of both transinfected lines. wCer2 was uniformly distributed in B. oleae egg chambers and the cortex of preblastoderm embryos. Wolbachia is known to manipulate host reproduction with several strategies, one of which is cytoplasmic incompatibility (CI), resulting in embryonic mortality in incompatible crosses. Wolbachia was found to induce complete CI in the novel host, suggesting that symbiont‐based approaches can be used as novel environmentally friendly tools for the control of natural olive fruit fly populations.  相似文献   

12.
Explanations for the evolution of delayed maturity usually invoke trade‐offs mediated by growth, but processes of reproductive maturation continue long after growth has ceased. Here, we tested whether sexual selection shapes the rate of posteclosion maturation in the fruit fly Drosophila melanogaster. We found that populations maintained for more than 100 generations under a short generation time and polygamous mating system evolved faster posteclosion maturation and faster egg‐to‐adult development of males, when compared to populations kept under short generations and randomized monogamy that eliminated sexual selection. An independent assay demonstrated that more mature males have higher fitness under polygamy, but this advantage disappears under monogamy. In contrast, for females greater maturity was equally advantageous under polygamy and monogamy. Furthermore, monogamous populations evolved faster development and maturation of females relative to polygamous populations, with no detectable trade‐offs with adult size or egg‐to‐adult survival. These results suggest that a major aspect of male maturation involves developing traits that increase success in sexual competition, whereas female maturation is not limited by investment in traits involved in mate choice or defense against male antagonism. Moreover, rates of juvenile development and adult maturation can readily evolve in opposite directions in the two sexes, possibly implicating polymorphisms with sexually antagonistic pleiotropy.  相似文献   

13.
14.
Maternally inherited endosymbionts that manipulate the reproduction of their insect host are very common. Aside from the reproductive manipulation they produce, the fitness of these symbionts depends in part on the direct impact they have on the female host. Although this parameter has commonly been investigated for single infections, it has much more rarely been established in dual infections. We here establish the direct effect of infection with two different symbionts exhibiting different reproductive manipulation phenotypes, both alone and in combination, in the fruit fly Drosophila melanogaster. This species carries a cytoplasmic incompatibility inducing Wolbachia and a male-killing Spiroplasma, occurring as single or double (co-) infections in natural populations. We assessed direct fitness effects of these bacteria on their host, by comparing larval competitiveness and adult fecundity of uninfected, Wolbachia, Spiroplasma and Wolbachia–Spiroplasma co-infected females. We found no effect of infection status on the fitness of females for both estimates, that is, no evidence of any benefits or costs to either single or co-infection. This leads to the conclusion that both bacteria probably have other sources of benefits to persist in D. melanogaster populations, either by means of their reproductive manipulations (fitness compensation from male death in Spiroplasma infection and cytoplasmic incompatibility in Wolbachia infection) or by positive fitness interactions on other fitness components.  相似文献   

15.
The stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), is one of the most significant biting flies that affect cattle. The use of traditional insecticides for stable fly control has only a limited success owing to the insect's unique feeding behaviours and immature development sites. A laboratory study was conducted to evaluate the effects of two insect growth regulator (IGR) products, pyriproxyfen and buprofezin, on the development of the immature stages of the stable fly and the effects of pyriproxyfen on oviposition and egg hatch. Both pyriproxyfen and buprofezin had significant inhibitory effects on immature development. The LC50s of pyriproxyfen and buprofezin were 0.002 and 18.92 p.p.m., respectively. Topical treatment of adult females with different doses of pyriproxyfen had significant negative effects on both female oviposition and egg hatching when 1‐ and 3‐day‐old females were treated, and the effects were dose dependent. A significant reduction in the mean number of eggs laid was observed only at the highest pyriproxyfen dose (8 µg/fly) and egg hatch was unaffected by pyriproxyfen treatment when 5‐day‐old females were treated. Results from the present study indicate that pyriproxyfen has the potential to be used as part of an integrated stable fly management programme.  相似文献   

16.
Some lines of the butterfly Hypolimnas bolina L. (Lepidoptera: Nymphalidae) are characterized by their female‐biased sex ratio. In these lines, most males die before reaching the middle larval stage. However, the cause of the bias remains unclear. We detected the proteobacterium Wolbachia in all individuals in the female‐biased butterfly lines and in some of the lines with a normal sex ratio. Tetracycline treatment of adult females of a female‐biased line led to a significant increase in both the hatch rate of their eggs (F1) and the male‐to‐female ratio of F1 pupae. In addition, certain assays of tetracycline treatment on mother butterflies significantly increased the male to female ratio of F1 adults. Known bacterial sex ratio distorters other than Wolbachia were not detected by diagnostic PCR assay, nor by the sequencing of 16S rDNA amplified using general prokaryotic 16S rDNA primers. These results strongly suggest that the distortion of the sex ratio is due to the killing of males by the inherited Wolbachia. Sequences of the 16S rDNA amplified using Wolbachia‐specific primers, the cell division protein gene (ftsZ), the molecular chaperone groE genes (groE operon), and the Wolbachia surface protein gene (wsp) from Wolbachia in lines belonging to three subspecies of the butterfly (bolina, jacintha, and philippensis) revealed no variation among lines nor between female‐biased lines and a normal one.  相似文献   

17.
The house fly, Musca domestica L., and the stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), are cosmopolitan pests parasitized by a guild of more than two dozen species of wasps. Several species of these wasps have been commercialized as biocontrol agents or are being studied for this purpose. Wolbachia bacteria are known to infect at least some of these wasps and are of interest because infections can dramatically affect insect reproduction. A survey in this parasitoid–fly system detected Wolbachia in 15 of 21 species of wasps and in three of nine species of flies parasitized by these wasps. Phylogenetic analyses using wsp gene sequences identified single isolate infections in most cases. Infections of two and four isolates were detected in Nasonia vitripennis (Walker) and Spalangia cameroni Perkins (Hymenoptera: Pteromalidae), respectively. Laboratory experiments showed infections in S. cameroni to cause an incomplete form of female‐mortality (FM) type cytoplasmic incompatibility (CI). Crosses between uninfected female and infected male partners (♀×♂w) produced fewer progeny, which had a strong male‐biased sex ratio. Crosses between ♀×♂, ♀w×♂w, and ♀w×♂ produced more progeny, which had a female‐biased sex ratio. Developmental times of progeny were increased when the paternal parent was infected with Wolbachia, regardless of whether the maternal parent was infected or whether offspring developed from fertilized eggs. This result may reflect the action of Wolbachia on components of the seminal fluid that then affect the development of offspring from inseminated females. It is hoped that future studies of Wolbachia in this guild will facilitate the rearing and application of these wasps as biocontrol agents of house fly and stable fly.  相似文献   

18.
Abstract Adult males are often less immunocompetent than females. One explanation for this is that intense sexual selection causes males to trade‐off investment in immunity with traits that increase mating success. This hypothesis is tested in the Wellington tree weta (Hemideina crassidens), a large, sexually dimorphic orthopteran insect in which males possess enormous mandibular weaponry used during fights for access to female mates. Field‐collected males have a significantly greater immune response (greater melanotic encapsulation) than females, suggesting that body condition, longevity or an allied trait is important to male fitness, or that females require materials for egg production that would otherwise be used to boost immunity. Although immunity is expected to trade‐off against reproductive traits in both sexes, there is no significant relationship between immune response and weapon or testes size in males, nor fecundity in females.  相似文献   

19.
The male giant water bug'sLethocerus deyrollei counterstrategy against egg mass destruction by the female was investigated in the laboratory. When mature females encounter a brooding male, they destroy his egg mass and thereby take over the mate and gain a nurse for their own egg mass. However, when the male stays on egg masses laid above the water surface, females cannot detect the male nor the egg mass. Eggs of this species fail to hatch without being supplied with water by males. In the observation, brooding males frequently ascend the stick to the egg mass and stay there for long periods, although most of the water attached to their body surface flowed down in 90 s. These long stays on egg masses are regarded as countestrategies against females.  相似文献   

20.
沃尔巴克氏体(Wolbachia)作为节肢动物的胞内共生菌,可以引起宿主产生雌性化、孤雌生殖、杀雄和胞质不相容性(cytoplasmic incompatibility, CI) 4种生殖表型。其中CI是最常见的现象,表现为受感染的雄性昆虫与未感染或感染不兼容Wolbachia的雌性昆虫交配时引起胚胎死亡;而雌性感染同种Wolbachia时胚胎能够正常发育。CI是由被称为CI因子(cifA和cifB)的Wolbachia基因对调控的。其中,CifB作为毒剂在雄性中表达诱导产生CI,而CifA作为解毒剂在雌性中表达拯救CI。本文综述了CI因子结构、功能和作用机制的研究,以期为未来利用Wolbachia和CI进行蚊媒疾病和农业虫害的防控奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号