首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Autophagosome formation is promoted by the PI3 kinase complex and negatively regulated by myotubularin phosphatases, indicating that regulation of local phosphatidylinositol 3‐phosphate (PtdIns3P) levels is important for this early phase of autophagy. Here, we show that the Caenorhabditis elegans myotubularin phosphatase MTM‐3 catalyzes PtdIns3P turnover late in autophagy. MTM‐3 acts downstream of the ATG‐2/EPG‐6 complex and upstream of EPG‐5 to promote autophagosome maturation into autolysosomes. MTM‐3 is recruited to autophagosomes by PtdIns3P, and loss of MTM‐3 causes increased autophagic association of ATG‐18 in a PtdIns3P‐dependent manner. Our data reveal critical roles of PtdIns3P turnover in autophagosome maturation and/or autolysosome formation.  相似文献   

2.
3.
    
Longevity is modulated by a range of conserved genes in eukaryotes, but it is unclear how variation in these genes contributes to the evolution of longevity in nature. Mutations that increase life span in model organisms typically induce trade‐offs which lead to a net reduction in fitness, suggesting that such mutations are unlikely to become established in natural populations. However, the fitness consequences of manipulating longevity have rarely been assessed in heterogeneous environments, in which stressful conditions are encountered. Using laboratory selection experiments, we demonstrate that long‐lived, stress‐resistant Caenorhabditis elegans age‐1(hx546) mutants have higher fitness than the wild‐type genotype if mixed genotype populations are periodically exposed to high temperatures when food is not limited. We further establish, using stochastic population projection models, that the age‐1(hx546) mutant allele can confer a selective advantage if temperature stress is encountered when food availability also varies over time. Our results indicate that heterogeneity in environmental stress may lead to altered allele frequencies over ecological timescales and indirectly drive the evolution of longevity. This has important implications for understanding the evolution of life‐history strategies.  相似文献   

4.
    
Many species use dormant stages for habitat selection by tying recovery to informative external cues. Other species have an undiscerning strategy in which they recover randomly despite having advanced sensory systems. We investigated whether elements of a species' habitat structure and life history can bar it from developing a discerning recovery strategy. The nematode Caenorhabditis elegans has a dormant stage called the dauer larva that disperses between habitat patches. On one hand, C. elegans colonization success is profoundly influenced by the bacteria found in its habitat patches, so we might expect this to select for a discerning strategy. On the other hand, C. elegans' habitat structure and life history suggest that there is no fitness benefit to varying recovery, which might select for an undiscerning strategy. We exposed dauers of three genotypes to a range of bacteria acquired from the worms' natural habitat. We found that C. elegans dauers recover in all conditions but increase recovery on certain bacteria depending on the worm's genotype, suggesting a combination of undiscerning and discerning strategies. Additionally, the worms' responses did not match the bacteria's objective quality, suggesting that their decision is based on other characteristics.  相似文献   

5.
6.
7.
RNA ligation can regulate RNA function by altering RNA sequence, structure and coding potential. For example, the function of XBP1 in mediating the unfolded protein response requires RNA ligation, as does the maturation of some tRNAs. Here, we describe a novel in vivo model in Caenorhabditis elegans for the conserved RNA ligase RtcB and show that RtcB ligates the xbp‐1 mRNA during the IRE‐1 branch of the unfolded protein response. Without RtcB, protein stress results in the accumulation of unligated xbp‐1 mRNA fragments, defects in the unfolded protein response, and decreased lifespan. RtcB also ligates endogenous pre‐tRNA halves, and RtcB mutants have defects in growth and lifespan that can be bypassed by expression of pre‐spliced tRNAs. In addition, animals that lack RtcB have defects that are independent of tRNA maturation and the unfolded protein response. Thus, RNA ligation by RtcB is required for the function of multiple endogenous target RNAs including both xbp‐1 and tRNAs. RtcB is uniquely capable of performing these ligation functions, and RNA ligation by RtcB mediates multiple essential processes in vivo.  相似文献   

8.
    
The insulin‐IGF‐1/DAF‐2 pathway has a central role in the determination of aging and longevity in Caenorhabditis elegans and other organisms. In this paper, we measured neuronal insulin secretion (using INS‐22::Venus) during C. elegans lifespan and monitored how this secretion is modified by redox homeostasis. We showed that INS‐22::Venus secretion fluctuates during the organism lifetime reaching maximum levels in the active reproductive stage. We also demonstrate that long‐lived daf‐2 insulin receptor mutants show remarkable low levels of INS‐22::Venus secretion. In contrast, we found that short‐lived mutant worms that lack the oxidation repair enzyme MSRA‐1 show increased levels of INS‐22::Venus secretion, specifically during the reproductive stage. MSRA‐1 is a target of the insulin‐IGF‐1/DAF‐2 pathway, and the expression of this antioxidant enzyme exclusively in the nervous system rescues the mutant insulin release phenotype and longevity. The msra‐1 mutant phenotype can also be reverted by antioxidant treatment during the active reproductive stage. We showed for the first time that there is a pattern of neuronal insulin release with a noticeable increment during the peak of reproduction. Our results suggest that redox homeostasis can modulate longevity through the regulation of insulin secretion, and that the insulin‐IGF‐1/DAF‐2 pathway could be regulated, at least in part, by a feedback loop. These findings highlight the importance of timing for therapeutic interventions aimed at improving health span.  相似文献   

9.
10.
11.
12.
13.
    
In light of the challenges to control Aedes aegypti and the critical role that it plays as arbovirus vector, it is imperative to adopt strategies that provide fast, efficient and environmentally safe control of the insect population. In the present study, we synthesized six indole derivatives (C1‐C6) and examined their larvicidal activity and persistence against Ae. aegypti larvae, as well as their toxicity towards Raw 264.7 macrophages, Vero cells, Chlorella vulgaris BR017, Scenedesmus obliquus BR003, Caenorhabditis elegans N2 and Galleria mellonella. Among the bioactive compounds (C1, C2, C4 and C5), C2 exerted the strongest larvicidal activity against Ae. aegypti, with LC50 = 1.5 μg/ml (5.88 µM) and LC90 = 2.4 μg/ml (9.50 µM), indicating that the presence of chlorine or bromine groups in the aromatic ring improved the larvicidal activity of the indole derivatives. C1, C2, C4 and C5 did not reduce viability of RAW 264.7 macrophages, Vero cells, C. elegans N2 and G. mellonella. Compounds C1, C2 and C5 did not affect the growth of C. vulgaris BR017 and S. obliquus BR003. Analysis of larvicidal persistence under laboratory conditions revealed that the effect of compounds C1, C2, C4 and C5 lasted for 30 days and caused 100% of larvae mortality within few hours. Altogether, our findings demonstrate that the indole derivatives C1, C2, C4 and C5 effectively control Ae. aegypti larvae population, without clear signs of toxicity to mammalian cells, algae, C. elegans and G. mellonella.  相似文献   

14.
15.
    
We report a systematic RNAi longevity screen of 82 Caenorhabditis elegans genes selected based on orthology to human genes differentially expressed with age. We find substantial enrichment in genes for which knockdown increased lifespan. This enrichment is markedly higher than published genomewide longevity screens in C. elegans and similar to screens that preselected candidates based on longevity‐correlated metrics (e.g., stress resistance). Of the 50 genes that affected lifespan, 46 were previously unreported. The five genes with the greatest impact on lifespan (>20% extension) encode the enzyme kynureninase (kynu‐1), a neuronal leucine‐rich repeat protein (iglr‐1), a tetraspanin (tsp‐3), a regulator of calcineurin (rcan‐1), and a voltage‐gated calcium channel subunit (unc‐36). Knockdown of each gene extended healthspan without impairing reproduction. kynu‐1(RNAi) alone delayed pathology in C. elegans models of Alzheimer's disease and Huntington's disease. Each gene displayed a distinct pattern of interaction with known aging pathways. In the context of published work, kynu‐1, tsp‐3, and rcan‐1 are of particular interest for immediate follow‐up. kynu‐1 is an understudied member of the kynurenine metabolic pathway with a mechanistically distinct impact on lifespan. Our data suggest that tsp‐3 is a novel modulator of hypoxic signaling and rcan‐1 is a context‐specific calcineurin regulator. Our results validate C. elegans as a comparative tool for prioritizing human candidate aging genes, confirm age‐associated gene expression data as valuable source of novel longevity determinants, and prioritize select genes for mechanistic follow‐up.  相似文献   

16.
Autophagosome biogenesis requires two ubiquitin‐like conjugation systems. One couples ubiquitin‐like Atg8 to phosphatidylethanolamine, and the other couples ubiquitin‐like Atg12 to Atg5. Atg12~Atg5 then forms a heterodimer with Atg16. Membrane recruitment of the Atg12~Atg5/Atg16 complex defines the Atg8 lipidation site. Lipidation requires a PI3P‐containing precursor. How PI3P is sensed and used to coordinate the conjugation systems remained unclear. Here, we show that Atg21, a WD40 β‐propeller, binds via PI3P to the preautophagosomal structure (PAS). Atg21 directly interacts with the coiled‐coil domain of Atg16 and with Atg8. This latter interaction requires the conserved F5K6‐motif in the N‐terminal helical domain of Atg8, but not its AIM‐binding site. Accordingly, the Atg8 AIM‐binding site remains free to mediate interaction with its E2 enzyme Atg3. Atg21 thus defines PI3P‐dependently the lipidation site by linking and organising the E3 ligase complex and Atg8 at the PAS.  相似文献   

17.
18.
19.
Cargo sorting and membrane carrier initiation in recycling endosomes require appropriately coordinated actin dynamics. However, the mechanism underlying the regulation of actin organization during recycling transport remains elusive. Here we report that the loss of PTRN‐1/CAMSAP stalled actin exchange and diminished the cytosolic actin structures. Furthermore, we found that PTRN‐1 is required for the recycling of clathrin‐independent cargo hTAC‐GFP. The N‐terminal calponin homology (CH) domain and central coiled‐coils (CC) region of PTRN‐1 can synergistically sustain the flow of hTAC‐GFP. We identified CYK‐1/formin as a binding partner of PTRN‐1. The N‐terminal GTPase‐binding domain (GBD) of CYK‐1 serves as the binding interface for the PTRN‐1 CH domain. The presence of the PTRN‐1 CH domain promoted CYK‐1‐mediated actin polymerization, which suggests that the PTRN‐1‐CH:CYK‐1‐GBD interaction efficiently relieves autoinhibitory interactions within CYK‐1. As expected, the overexpression of the CYK‐1 formin homology domain 2 (FH2) substantially restored actin structures and partially suppressed the hTAC‐GFP overaccumulation phenotype in ptrn‐1 mutants. We conclude that the PTRN‐1 CH domain is required to stimulate CYK‐1 to facilitate actin dynamics during endocytic recycling.  相似文献   

20.
    
Organisms live in heterogeneous environments, so strategies that maximze fitness in such environments will evolve. Variation in traits is important because it is the raw material on which natural selection acts during evolution. Phenotypic variation is usually thought to be due to genetic variation and/or environmentally induced effects. Therefore, genetically identical individuals in a constant environment should have invariant traits. Clearly, genetically identical individuals do differ phenotypically, usually thought to be due to stochastic processes. It is now becoming clear, especially from studies of unicellular species, that phenotypic variance among genetically identical individuals in a constant environment can be genetically controlled and that therefore, in principle, this can be subject to selection. However, there has been little investigation of these phenomena in multicellular species. Here, we have studied the mean lifetime fecundity (thus a trait likely to be relevant to reproductive success), and variance in lifetime fecundity, in recently‐wild isolates of the model nematode Caenorhabditis elegans. We found that these genotypes differed in their variance in lifetime fecundity: some had high variance in fecundity, others very low variance. We find that this variance in lifetime fecundity was negatively related to the mean lifetime fecundity of the lines, and that the variance of the lines was positively correlated between environments. We suggest that the variance in lifetime fecundity may be a bet‐hedging strategy used by this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号