首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
As the brain is responsible for managing an individual's behavioral response to its environment, we should expect that large relative brain size is an evolutionary response to cognitively challenging behaviors. The "social brain hypothesis" argues that maintaining group cohesion is cognitively demanding as individuals living in groups need to be able to resolve conflicts that impact on their ability to meet resource requirements. If sociality does impose cognitive demands, we expect changes in relative brain size and sociality to be coupled over evolutionary time. In this study, we analyze data on sociality and relative brain size for 206 species of ungulates, carnivores, and primates and provide, for the first time, evidence that changes in sociality and relative brain size are closely correlated over evolutionary time for all three mammalian orders. This suggests a process of coevolution and provides support for the social brain theory. However, differences between taxonomic orders in the stability of the transition between small-brained/nonsocial and large-brained/social imply that, although sociality is cognitively demanding, sociality and relative brain size can become decoupled in some cases. Carnivores seem to have been especially prone to this.  相似文献   

3.
The social brain hypothesis is a well-accepted and well-supported evolutionary theory of enlarged brain size in the non-human primates. Nevertheless, it tends to emphasize an anthropocentric view of social life and cognition. This often leads to confusion between ultimate and proximate mechanisms, and an over-reliance on a Cartesian, narratively structured view of the mind and social life, which in turn lead to views of social complexity that are congenial to our views of ourselves, rather than necessarily representative of primate social worlds. In this paper, we argue for greater attention to embodied and distributed theories of cognition, which get us away from current fixations on 'theory of mind' and other high-level anthropocentric constructions, and allow for the generation of testable hypotheses that combine neurobiology, psychology and behaviour in a mutually reinforcing manner.  相似文献   

4.
5.
Sociality is primarily a coordination problem. However, the social (or communication) complexity hypothesis suggests that the kinds of information that can be acquired and processed may limit the size and/or complexity of social groups that a species can maintain. We use an agent-based model to test the hypothesis that the complexity of information processed influences the computational demands involved. We show that successive increases in the kinds of information processed allow organisms to break through the glass ceilings that otherwise limit the size of social groups: larger groups can only be achieved at the cost of more sophisticated kinds of information processing that are disadvantageous when optimal group size is small. These results simultaneously support both the social brain and the social complexity hypotheses.  相似文献   

6.
Cooperative breeders serve as a model to study the evolution of cooperation, where costs and benefits of helping are typically scrutinized at the level of group membership. However, cooperation is often observed in multi-level social organizations involving interactions among individuals at various levels. Here, we argue that a full understanding of the adaptive value of cooperation and the evolution of complex social organization requires identifying the effect of different levels of social organization on direct and indirect fitness components. Our long-term field data show that in the cooperatively breeding, colonial cichlid fish Neolamprologus pulcher, both large group size and high colony density significantly raised group persistence. Neither group size nor density affected survival at the individual level, but they had interactive effects on reproductive output; large group size raised productivity when local population density was low, whereas in contrast, small groups were more productive at high densities. Fitness estimates of individually marked fish revealed indirect fitness benefits associated with staying in large groups. Inclusive fitness, however, was not significantly affected by group size, because the direct fitness component was not increased in larger groups. Together, our findings highlight that the reproductive output of groups may be affected in opposite directions by different levels of sociality, and that complex forms of sociality and costly cooperation may evolve in the absence of large indirect fitness benefits and the influence of kin selection.  相似文献   

7.
Bottlenose dolphins in Shark Bay, Australia, live in a large, unbounded society with a fission-fusion grouping pattern. Potential cognitive demands include the need to develop social strategies involving the recognition of a large number of individuals and their relationships with others. Patterns of alliance affiliation among males may be more complex than are currently known for any non-human, with individuals participating in 2-3 levels of shifting alliances. Males mediate alliance relationships with gentle contact behaviours such as petting, but synchrony also plays an important role in affiliative interactions. In general, selection for social intelligence in the context of shifting alliances will depend on the extent to which there are strategic options and risk. Extreme brain size evolution may have occurred more than once in the toothed whales, reaching peaks in the dolphin family and the sperm whale. All three 'peaks' of large brain size evolution in mammals (odontocetes, humans and elephants) shared a common selective environment: extreme mutual dependence based on external threats from predators or conspecific groups. In this context, social competition, and consequently selection for greater cognitive abilities and large brain size, was intense.  相似文献   

8.
Studies of eusocial invertebrates regard complex societies as those where there is a clear division of labour and extensive cooperation between breeders and helpers. In contrast, studies of social mammals identify complex societies as those where differentiated social relationships influence access to resources and reproductive opportunities. We show here that, while traits associated with social complexity of the first kind occur in social mammals that live in groups composed of close relatives, traits associated with the complexity of social relationships occur where average kinship between female group members is low. These differences in the form of social complexity appear to be associated with variation in brain size and probably reflect contrasts in the extent of conflicts of interest between group members. Our results emphasise the limitations of any unitary concept of social complexity and show that variation in average kinship between group members has far‐reaching consequences for animal societies.  相似文献   

9.
Most primates are intensely social and spend a large amount of time servicing social relationships. In this study, we use social network analysis to examine the relationship between primate group size, total brain size, neocortex ratio and several social network metrics concerned with network cohesion. Using female grooming networks from a number of Old World monkey species, we found that neocortex size was a better predictor of network characteristics than endocranial volumes. We further found that when we controlled for group size, neocortex ratio was negatively correlated with network density, connectivity, relative clan size and proportional clan membership, while there was no effect of neocortex ratio on change in connectivity following the removal of the most central female in the network. Thus, in species with larger neocortex ratios, females generally live in more fragmented networks, belong to smaller grooming clans and are members of relatively fewer clans despite living in a closely bonded group. However, even though groups are more fragmented to begin with among species with larger neocortices, the removal of the most central individual does cause groups to fall apart, suggesting that social complexity may ultimately involve the management of highly fragmented social groups while at the same time maintaining overall social cohesion. These results emphasize a need for more detailed brain data on a wider sample of primate species.  相似文献   

10.
Patterns of within‐group relatedness are expected to affect the prospects for cooperation among group members through kin selection. It has long been established that dispersal patterns determine the availability of kin and there is ample evidence of matrilineal kin biases in social behavior across primate species. However, in 1979, Jeanne Altmann1 suggested that mating patterns also influence the structure of within‐group relatedness; high male reproductive skew and the frequent replacement of breeding males leads to relatively high levels of paternal relatedness and age‐structured paternal sibships within groups. As a consequence of frequent replacement of breeding males, relatedness among offspring of a given female will be reduced to the half‐ rather than full‐sibling level. Depending on the number of sires and degree of relatedness among mothers, members of the same birth cohort may be as closely related as maternal siblings. If animals are able to recognize their paternal kin and exhibit biases in favor of them, this may influence the distribution of cooperation and the intensity of competition within groups of primates. Here, I summarize the evidence that serves as the basis for Altmann's predictions and review evidence regarding whether or not the availability of paternal kin also leads to paternal kin bias among primates.  相似文献   

11.
12.
The social brain hypothesis assumes the evolution of social behaviour changes animals'' ecological environments, and predicts evolutionary shifts in social structure will be associated with changes in brain investment. Most social brain models to date assume social behaviour imposes additional cognitive challenges to animals, favouring the evolution of increased brain investment. Here, we present a modification of social brain models, which we term the distributed cognition hypothesis. Distributed cognition models assume group members can rely on social communication instead of individual cognition; these models predict reduced brain investment in social species. To test this hypothesis, we compared brain investment among 29 species of wasps (Vespidae family), including solitary species and social species with a wide range of social attributes (i.e. differences in colony size, mode of colony founding and degree of queen/worker caste differentiation). We compared species means of relative size of mushroom body (MB) calyces and the antennal to optic lobe ratio, as measures of brain investment in central processing and peripheral sensory processing, respectively. In support of distributed cognition predictions, and in contrast to patterns seen among vertebrates, MB investment decreased from solitary to social species. Among social species, differences in colony founding, colony size and caste differentiation were not associated with brain investment differences. Peripheral lobe investment did not covary with social structure. These patterns suggest the strongest changes in brain investment—a reduction in central processing brain regions—accompanied the evolutionary origins of eusociality in Vespidae.  相似文献   

13.
14.
Cognitive impairment in schizophrenia involves a broad array of nonsocial and social cognitive domains. It is a core feature of the illness, and one with substantial implications for treatment and prognosis. Our understanding of the causes, consequences and interventions for cognitive impairment in schizophrenia has grown substantially in recent years. Here we review a range of topics, including: a) the types of nonsocial cognitive, social cognitive, and perceptual deficits in schizophrenia; b) how deficits in schizophrenia are similar or different from those in other disorders; c) cognitive impairments in the prodromal period and over the lifespan in schizophrenia; d) neuroimaging of the neural substrates of nonsocial and social cognition, and e) relationships of nonsocial and social cognition to functional outcome. The paper also reviews the considerable efforts that have been directed to improve cognitive impairments in schizophrenia through novel psychopharmacology, cognitive remediation, social cognitive training, and alternative approaches. In the final section, we consider areas that are emerging and have the potential to provide future insights, including the interface of motivation and cognition, the influence of childhood adversity, metacognition, the role of neuroinflammation, computational modelling, the application of remote digital technology, and novel methods to evaluate brain network organization. The study of cognitive impairment has provided a way to approach, examine and comprehend a wide range of features of schizophrenia, and it may ultimately affect how we define and diagnose this complex disorder.  相似文献   

15.
16.
17.
Body-weight estimates of fossil primates are commonly used to infer many important aspects of primate paleobiology, including diet, ecology, and relative encephalization. It is important to examine carefully the methodologies and problems associated with such estimates and the degree to which one can have confidence in them. New regression equations for predicting body weight in fossil primates are given which provide body-weight estimates for most nonhominid primate species in the fossil record. The consequences of using different subgroups (evolutionary “grades”) of primate species to estimate fossil-primate body weights are explored and the implications of these results for interpreting the primate fossil record are discussed. All species (fossil and extant) were separated into the following “grades”: prosimian grade, monkey grade, ape grade, anthropoid grade, and all-primates grade. Regression equations relating lower molar size to body weight for each of these grades were then calculated. In addition, a female-anthropoid grade regression was also calculated for predicting body weight infernales of extinct, sexually dimorphic anthropoid species. These equations were then used to generate the fossil-primate body weights. In many instances, the predicted fossil-primate body weights differ substantially from previous estimates.  相似文献   

18.
19.
Cooperation and competition are two key components of social life. Current research agendas investigating the psychological underpinnings of competition and cooperation in non-human primates are misaligned. The majority of work on competition has been done in the context of theory of mind and deception, while work on cooperation has mostly focused on collaboration and helping. The current impression that theory of mind is not necessarily implicated in cooperative activities and that helping could not be an integral part of competition might therefore be rather misleading. Furthermore, theory of mind research has mainly focused on cognitive aspects like the type of stimuli controlling responses, the nature of representation and how those representations are acquired, while collaboration and helping have focused primarily on motivational aspects like prosociality, common goals and a sense of justice and other-regarding concerns. We present the current state of these two bodies of research paying special attention to how they have developed and diverged over the years. We propose potential directions to realign the research agendas to investigate the psychological underpinnings of cooperation and competition in primates and other animals.  相似文献   

20.
Urbanization causes dramatic and rapid changes to natural environments, which can lead the animals inhabiting these habitats to adjust their behavioral responses. For social animals, urbanized environments may alter group social dynamics through modification of the external environment (e.g., resource distribution). This might lead to changes in how individuals associate or engage in group behaviors, which could alter the stability and characteristics of social groups. However, the potential impacts of urban habitat use, and of habitat characteristics in general, on the nature and stability of social associations remain poorly understood. Here, we quantify social networks and dynamics of group foraging behaviors of black‐capped chickadees (N = 82, Poecile atricapillus), at four urban and four rural sites weekly throughout the nonbreeding season using feeders with radio frequency identification of individual birds. Because anthropogenic food sources in urban habitats (e.g., bird feeders) provide abundant and reliable resources, we predicted that social foraging associations may be of less value in urban groups, and thus would be less consistent than in rural groups. Additionally, decreased variability of food resources in urban habitats could lead to more predictable foraging patterns (group size, foraging duration, and the distribution of foraging events) in contrast to rural habitats. Networks were found to be highly consistent through time in both urban and rural habitats. No significant difference was found in the temporal clumping of foraging events between habitats. However, as predicted, the repeatability of the clumping of foraging events in time was significantly higher in urban than rural habitats. Our results suggest that individuals living in urban areas have more consistent foraging behaviors throughout the nonbreeding season, whereas rural individuals adjust their tactics due to less predictable foraging conditions. This first examination of habitat‐related differences in the characteristics and consistency of social networks along an urbanization gradient suggests that anthropic habitat use results in subtle modifications in social foraging patterns. Future studies should examine potential implications of these differences for variation in predation risk, energy intake, and information flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号