首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell-Penetrating Peptides (CPPs) are short peptides that are able to translocate across the cell membrane a wide range of cargoes. In the past decade, different mammalian cell lines have been used to clarify the mechanism of CPPs penetration and to characterize the internalization process, which has been described either as an energy-independent direct penetration through the plasma membrane, or as endocytic uptake. Whatever the mechanism involved, the cell penetration properties of these peptides make their use very attractive as vector for promoting the cellular uptake of coupled bioactive macromolecules, such as peptides, proteins and oligonucleotides. Here we demonstrate, for the first time in insect, that cultured columnar cells from the larval midgut of Bombyx mori more readily internalize eGFP (enhanced Green Fluorescent Protein) when fused to CPP Tat. Tat-eGFP translocates across the plasma membrane of absorptive cells in an energy-independent and non-endocytic manner, since no inhibition of the fusion protein uptake is exerted by metabolic inhibitors and by drugs that interfere with the endocytic uptake. Moreover, the CPP Tat enhances the internalization of eGFP in the columnar cells of intact midgut tissue, mounted in a suitable perfusion apparatus, and the transepithelial flux of the protein. These results open new perspectives for effective delivery of insecticidal macromolecules targeting receptors located both within the insect gut epithelium and behind the gut barrier, in the hemocoel compartment.  相似文献   

2.
Densoviruses are parvoviruses that can be lethal for insects of different orders at larval stages. Although the horizontal transmission mechanisms are poorly known, densoviral pathogenesis usually starts with the ingestion of contaminated food by the host. Depending on the virus, this leads to replication restricted to the midgut or excluding it. In both cases the success of infection depends on the virus capacity to enter the intestinal epithelium. Using the Junonia coenia densovirus (JcDNV) as the prototype virus and the lepidopteran host Spodoptera frugiperda as an interaction model, we focused on the early mechanisms of infection during which JcDNV crosses the intestinal epithelium to reach and replicate in underlying target tissues. We studied the kinetics of interaction of JcDNV with the midgut epithelium and the transport mechanisms involved. Using several approaches, in vivo, ex vivo, and in vitro, at molecular and cellular levels, we show that JcDNV is specifically internalized by endocytosis in absorptive cells and then crosses the epithelium by transcytosis. As a consequence, viral entry disturbs the midgut function. Finally, we showed that four mutations on the capsid of JcDNV affect specific recognition by the epithelial cells but not their binding.  相似文献   

3.
杀虫晶体蛋白(insecticidal crystal proteins,ICPs;含有Cry和Cyt 2大家族)和营养期杀虫蛋白(vegetative insecticidal proteins,Vips)等Bt杀虫蛋白可有效防治鳞翅目害虫,其中Cry应用最广泛。然而,一些地区的鳞翅目害虫已对Bt杀虫蛋白产生了抗性。目前,普遍认为鳞翅目昆虫中肠受体与Bt杀虫蛋白结合能力的改变是导致其对Bt杀虫蛋白产生抗性的最主要因素。在鳞翅目昆虫中,Cry受体是研究得最为透彻的Bt受体,已经被证实的有氨肽酶N、钙黏蛋白、碱性磷酸酶和ABC转运蛋白等。Vips杀虫蛋白类与鳞翅目昆虫中肠受体的结合方式与Cry杀虫蛋白相似,但结合位点与Cry杀虫蛋白不同。本文从结构特点、作用机制及不同鳞翅目昆虫间的表达差异等角度对以上4种鳞翅目昆虫中肠Bt受体进行了综述,并提出如下展望:(1)以棉铃虫或小菜蛾等鳞翅目昆虫为农业害虫模式生物进行深入研究,阐明其对Bt杀虫蛋白产生抗性的机制,为研究其他鳞翅目农业害虫对Bt杀虫蛋白产生抗性的机制提供理论借鉴;(2)鉴于在不同鳞翅目昆虫间,中肠Bt受体与Bt杀虫蛋白结合存在差异,且同一Bt杀虫蛋白与鳞翅目昆虫Bt受体并不专一性结合,Bt杀虫蛋白多基因组合策略是较为有效的田间鳞翅目昆虫防治策略,是今后一段时间内Bt杀虫蛋白应用的发展方向。  相似文献   

4.
Certain optical brighteners are effective UV protectants, and can improve the insecticidal activity of baculoviruses. We evaluated the effect of 10 optical brighteners, from four chemically different groups, on the insecticidal activity of a nucleopolyhedrovirus (SfMNPV) in third instar Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). The most effective optical brighteners were Blankophor BBH and Calcofluor M2R, both of which are stilbenes. The distyryl‐biphenyl derivative, Tinopal CBS, had no effect, whereas the stilbenes, Blankophor CLE and Leucophor SAC and the styryl‐benzenic derivative, Blankophor ER, resulted in a decrease in virus induced mortality compared to larvae infected with SfMNPV alone. Mixtures of SfMNPV + 0.1% Calcofluor M2R had relative potencies of 2.7, 6.5, and 61.6 in the second, third, and fourth instars, respectively. The mean time to death differed with instar, but was not affected by the addition of 0.1% Calcofluor M2R. Analysis of published studies indicated that the concentration of Calcofluor M2R‐related stilbenes was positively correlated with the relative potency observed in mixtures with homologous NPVs. The average magnitude of optical brightener activity did not differ significantly between early instars of 10 species of Lepidoptera. We conclude that virus formulations containing optical brighteners may be valuable for control of late instar lepidopteran pests.  相似文献   

5.
An insecticidal protein gene from Bacillus thuringiensis var. aizawal was cloned in Escherichia coli. The cloned gene expressed at a high level and the synthesized protein appeared as an insoluble, phase-bright inclusion in the cytoplasm. These inclusions were isolated by density gradient centrifugation, the isolated protein was activated in vitro by different proteloytic regimes and the toxicity of the resulting preparations was studied using insect cells grown in tissue culture. The inclusions consisted of a 130 kDa polypeptide which was processed to a protease-resist-ant 55 kDa protein by tryptic digestion. This preparation lysed lepidopteran (Choristoneura fumiferana) CFI ceils but not dipteran (Aedes albopictus) calls. When the crystal protein was activated by sequential treatment, first with trypsin and then with Aedes aegypti gut proteases, the resulting 53 kDa polypeptide was now toxic only to the dipteran cells and not to the lepidopteran cells. Thus the dual specificity of this var. aizawal toxin results from differential proteolytic processing of a single protoxin. The trypsin-activated preparation was weakly active against Spodoptera frugiperda cells. Membrane binding studies of the trypsin-activated toxin revealed a 68 kDa protein in the lepidopteran ceil membranes, which may be the receptor for this toxin.  相似文献   

6.
The bacterium Bacillus thuringiensis produces, at the vegetative stage of its growth, Vip3A proteins with activity against a broad spectrum of lepidopteran insects. The Egyptian cotton leaf worm (Spodoptera littoralis) is an important agricultural pest that is susceptible to the Vip3Aa16 protein of Bacillus thuringiensis kurstaki strain BUPM95. The midgut histopathology of Vip3Aa fed larvae showed vacuolization of the cytoplasm, brush border membrane destruction, vesicle formation in the apical region and cellular disintegration. Biotinylated Vip3Aa toxin bound proteins of 55- and 100-kDa on blots of S. littoralis brush border membrane preparations. These binding proteins differ in molecular size from those recognized by Cry1C, one of the very few Cry proteins active against the polyphagous S. littoralis. This result supports the use of Vip3Aa16 proteins as insecticidal agent, especially in case of Cry-resistance management.  相似文献   

7.
Larvae of the tobacco budworm,Heliothis virescens, are resistant to high levels of ingested 20-hydroxyecdysone which could cause potential inhibition to the development of many other lepidopteran species. This resistance is attributed to the ability of the larvae to metabolize this molting hormone to its 22-acyl ester forms. When tobacco budworm larvae were fed large quantities of 20-hydroxyecdyone, the hormonal metabolites were found in gut and fat body tissues. When incubated with 20-hydroxyecdysone gut tissue converted 20-hydroxyecdysone into its 22-acyl ester metabolites. Lumen site of the midgut was found to be the major location of this bio-transformation. In contrast, fat body tissue failed to convert 20-hydroxyecdysone to 22-acyl ester metabolitesin vitro. After the oral injection of3H-ecdysone, the major metabolites formed were ecdysone 22-acyl esters whereas the majority of3H-ecdysone was transformed to polar metabolites after it was injected into the hemocoel of the larvae. Similar distributions of ecdysteroid 22-O-acyltransferase and alkaline phosphatase activity in subcellular fractions demonstrates the co-localization of these enzymes in plasma membrane of the gut epithelial cells. These results suggest that gut brush border membrane is the major site of ecdysteroid 22-acyl ester formation inH. virescens larvae.  相似文献   

8.
Clathrin mediated endocytosis (CME) has been extensively studied in living cells by quantitative total internal reflection fluorescence microscopy (TIRFM). Fluorescent protein fusions to subunits of the major coat proteins, clathrin light chains or the heterotetrameric adaptor protein (AP2) complexes, have been used as fiduciary markers of clathrin coated pits (CCPs). However, the functionality of these fusion proteins has not been rigorously compared. Here, we generated stable cells lines overexpressing mRuby‐CLCa and/or μ2‐eGFP, σ2‐eGFP, two markers currently in use, or a novel marker generated by inserting eGFP into the unstructured hinge region of the α subunit (α‐eGFP). Using biochemical and TIRFM‐based assays, we compared the functionality of the AP2 markers. All of the eGFP‐tagged subunits were efficiently incorporated into AP2 and displayed greater accuracy in image‐based CCP analyses than mRuby‐CLCa. However, overexpression of either μ2‐eGFP or σ2‐eGFP impaired transferrin receptor uptake. In addition, μ2‐eGFP reduced the rates of CCP initiation and σ2‐eGFP perturbed AP2 incorporation into CCPs and CCP maturation. In contrast, CME and CCP dynamics were unperturbed in cells overexpressing α‐eGFP. Moreover, α‐eGFP was a more sensitive and accurate marker of CCP dynamics than mRuby‐CLCa. Thus, our work establishes α‐eGFP as a robust, fully functional marker for CME.  相似文献   

9.
ABSTRACT

Essential oils are a promising alternative to insecticides. We investigated the LD50 of oils extracted from Piper corcovadensis, P. marginatum, and P. arboreum after 48 h topical contact with Spodoptera frugiperda larvae using morphometry, histochemistry and immunohistochemistry of the midgut and fat body. Chromatography revealed that E-caryophyllene was the principal compound common to the Piper species. The essential oils of P. corcovadensis, P. marginatum and P. arboreum caused deleterious changes in the midgut of S. frugiperda larvae. P. corcovadensis oil produced the lowest LD50 and significant histopathological alterations including elongation of the columnar cells, formation of cytoplasmic protrusions, reduction in carbohydrate, increased apoptotic index and decreased cell proliferation. P. arboreum oil caused histopathological alterations similar to P. corcovadensis, but caused the highest rate of cell proliferation and increased regenerative cells, which indicated rapid regeneration of the epithelium. Our findings demonstrated the insecticidal potential of P. corcovadensis for control of S. frugiperda owing to the significant damage it inflicted on S. frugiperda midgut.  相似文献   

10.
Desai P  Sexton GL  Huang E  Person S 《Journal of virology》2008,82(22):11354-11361
The herpes simplex virus type 1 (HSV-1) UL37 gene encodes a 120-kDa polypeptide which resides in the tegument structure of the virion and is important for morphogenesis. The goal of this study was to use green fluorescent protein (GFP) to follow the fate of UL37 within cells during the normal course of virus replication. GFP was inserted in frame at the C terminus of UL37 to generate a fluorescent-protein-tagged UL37 polypeptide. A virus designated K37eGFP, which replicated normally on Vero cells, was isolated and was shown to express the fusion polypeptide. When cells infected with this virus were examined by confocal microscopy, the fluorescence was observed to be predominantly cytoplasmic. As the infection progressed, fluorescence began to accumulate in a juxtanuclear structure. Mannosidase II and giantin were observed to colocalize with UL37eGFP at these structures, as judged by immunofluorescence assays. Therefore, UL37 traffics to the Golgi complex during infection. A VP26mRFP marker (red fluorescent protein fused to VP26) was recombined into K37eGFP, and when cells infected with this “dual-color” virus were examined, colocalization of the red (capsid) and green (UL37) fluorescence in the Golgi structure was observed. Null mutations in VP5 (ΔVP5), which abolished capsid assembly, and in UL36 (Δ36) were recombined into the K37eGFP virus genome. In cells infected with K37eGFP/ΔVP5, localization of UL37eGFP to the Golgi complex was similar to that for the parental virus (K37eGFP), indicating that trafficking of UL37eGFP to the Golgi complex did not require capsid structures. Confocal analysis of cells infected with K37eGFP/Δ36 showed that, in the absence of UL36, accumulation of UL37eGFP at the Golgi complex was not evident. This indicates an interaction between these two proteins that is important for localization of UL37 in the Golgi complex and thus possibly for cytoplasmic envelopment of the capsid. This is the first demonstration of a functional role for UL36:UL37 interaction in HSV-1-infected cells.  相似文献   

11.
Bovine serum albumin (BSA) and anti‐BSA polyclonal antibody were used as model polypeptides to examine the movement of foreign proteins across the insect digestive system and their accumulation in hemolymph of fourth stadium tobacco budworms, Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae). Hydrateable meal pads were developed in these studies as a method for easily introducing compounds into the insect digestive system. When insects were allowed to feed continuously on hydrated meal pads containing 0.8 mg of anti‐BSA per gram diet, the level of antibody found in hemolymph was 2.4 ± 0.1 and 3.4 ± 0.1 µg ml?1 (average  1 SEM) after 8 and 16 h, respectively, as determined by enzyme‐linked immunosorbant assay (ELISA). Continuous feeding on hydrated meal pads containing the same concentration of BSA produced hemolymph concentrations of 1.5 ± 0.1 and 1.6 ± 0.1 µg ml?1 hemolymph at 8 and 16 h, respectively. Western blot analyses demonstrated that BSA and anti‐BSA both retained their primary and multimeric structure and that anti‐BSA maintained its antigenic activity in the meal pads and after movement from meal pads into the hemolymph. When 1 µg of anti‐BSA or BSA was injected into the hemocoel of fourth instars, the concentrations decreased with time and 120 min after injection were 20% and 0.6% of the original concentration, respectively. When added at the same concentration to plasma in vitro, the decrease was 81.5% and 57.5%, respectively, at 2 h. The accumulation of native anti‐BSA and BSA protein in insect hemolymph is the result of their rate of movement across the gut and their rate of turnover in hemolymph. Movement of anti‐BSA and BSA across the digestive system was also noted in Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), Acheta domesticus (L.) (Orthoptera: Gryllidae), and Gromphadorhina portentosa (Schaum) (Blattaria: Blattellidae). Anti‐BSA and BSA were not detected in the hemolymph of Manduca sexta (L.) (Lepidoptera: Sphingidae) after feeding.  相似文献   

12.
Binding of three Bacillus thuringiensis insecticidal crystal proteins (ICPs) to the midgut epithelium of Ostrinia nubilalis larvae was characterized by performing binding experiments with both isolated brush border membrane vesicles and gut tissue sections. Our results demonstrate that two independent ICP receptors are present in the brush border of O. nubilalis gut epithelium. From competition binding experiments performed with I-labeled and native ICPs it was concluded that CryIA(b) and CryIA(c) are recognized by the same receptor. An 11-fold-higher binding affinity of CryIA(b) for this receptor correlated with a 10-fold-higher toxicity of this ICP compared with CryIA(c). The CryIB toxin did not compete for the binding site of CryIA(b) and CryIA(c). Immunological detection of ingested B. thuringiensis ICPs on gut sections of O. nubilalis larvae revealed binding only along the epithelial brush border membrane. CryID and CryIE, two ICPs that are not toxic to O. nubilalis, were not bound to the apical microvilli of gut epithelial cells. In vitro binding experiments performed with native and biotinylated ICPs on tissue sections confirmed the correlation between ICP binding and toxicity. Moreover, by performing heterologous competition experiments with biotinylated and native ICPs, it was confirmed that the CryIB receptor is different from the receptor for CryIA(b) and CryIA(c). Retention of activated crystal proteins by the peritrophic membrane was not correlated with toxicity. Furthermore, it was demonstrated that CryIA(b), CryIA(c), and CryIB toxins interact in vitro with the epithelial microvilli of Malpighian tubules. In addition, CryIA(c) toxin also adheres to the basement membrane of the midgut epithelium.  相似文献   

13.
Photorhabdus luminescens is a bacterium which is mutualistic with entomophagous nematodes and which secretes high-molecular-weight toxin complexes following its release into the insect hemocoel upon nematode invasion. Thus, unlike other protein toxins from Bacillus thuringiensis (δ-endotoxins and Vip’s), P. luminescens toxin (Pht) normally acts from within the insect hemocoel. Unexpectedly, therefore, the toxin complex has both oral and injectable activities against a wide range of insects. We have recently fractionated the protein toxin and shown it to consist of several native complexes, the most abundant of which we have termed Toxin complex a (Tca). This complex is highly active against the lepidopteran Manduca sexta. In view of the difference in the normal mode of delivery of P. luminescens toxin and the apparent communality in the histopathological effects of other gut-active toxins from B. thuringiensis, as well as cholesterol oxidase, we were interested in investigating the effects of purified Tca protein on larvae of M. sexta. Here we report that the histopathology of the M. sexta midgut is similar to that for other novel midgut-active toxins. Following oral ingestion of Tca by M. sexta, we observed an acceleration in the blebbing of the midgut epithelium into the gut lumen and eventual lysis of the epithelium. The midgut shows a similar histopathology following injection of Tca into the insect hemocoel. These results not only show that Tca is a highly active oral insecticide but also confirm the similar histopathologies of a range of very different gut-active toxins, despite presumed differences in modes of action and/or delivery. The implications for the mode of action of Tca are discussed.  相似文献   

14.
Binding of three Bacillus thuringiensis insecticidal crystal proteins (ICPs) to the midgut epithelium of Ostrinia nubilalis larvae was characterized by performing binding experiments with both isolated brush border membrane vesicles and gut tissue sections. Our results demonstrate that two independent ICP receptors are present in the brush border of O. nubilalis gut epithelium. From competition binding experiments performed with 125I-labeled and native ICPs it was concluded that CryIA(b) and CryIA(c) are recognized by the same receptor. An 11-fold-higher binding affinity of CryIA(b) for this receptor correlated with a 10-fold-higher toxicity of this ICP compared with CryIA(c). The CryIB toxin did not compete for the binding site of CryIA(b) and CryIA(c). Immunological detection of ingested B. thuringiensis ICPs on gut sections of O. nubilalis larvae revealed binding only along the epithelial brush border membrane. CryID and CryIE, two ICPs that are not toxic to O. nubilalis, were not bound to the apical microvilli of gut epithelial cells. In vitro binding experiments performed with native and biotinylated ICPs on tissue sections confirmed the correlation between ICP binding and toxicity. Moreover, by performing heterologous competition experiments with biotinylated and native ICPs, it was confirmed that the CryIB receptor is different from the receptor for CryIA(b) and CryIA(c). Retention of activated crystal proteins by the peritrophic membrane was not correlated with toxicity. Furthermore, it was demonstrated that CryIA(b), CryIA(c), and CryIB toxins interact in vitro with the epithelial microvilli of Malpighian tubules. In addition, CryIA(c) toxin also adheres to the basement membrane of the midgut epithelium.  相似文献   

15.
The insect pathogen Bacillus thuringiensis is suitable for use in biological control, and certain strains have been developed as commercial bioinsecticides. The molecular and biological characterization of a Bacillus thuringiensis subsp. aizawai strain, named HU4‐2, revealed its potential as a bioinsecticide. The strain was found to contain eight different cry genes: cry1Ab, cry1Ad, cry1C, cry1D, cry1F, cry2, cry9Ea1, and a novel cry1I‐type gene. Purified parasporal crystals from strain HU4‐2 comprised three major proteins of 130–145 kDa, which were tested for their insecticidal potency to four species of Lepidoptera (Helicoverpa armigera, Spodoptera exigua, S. littoralis, and S. frugiperda) and three species of mosquito (Culex pipiens pipiens, Aedes aegypti, and Anopheles stephensi). The crystal proteins were highly toxic against all the species of Lepidoptera tested, moderately toxic against two of the mosquito species (C. pipiens and Ae. aegypti), but no toxicity was observed against a third species of mosquito (An. stephensi) at the concentrations used in our study. The LC50 values of the HU4‐2 Bt strain against H. armigera larvae (5.11 µg/ml) was similar to that of HD‐1 Bt strain (2.35 µg/ml), the active ingredient of the commercial product Dipel®. Additionally, the LC50 values of the HU4‐2 Bt strain against S. littoralis, S. frugiperda, and S. exigua (2.64, 2.22, and 3.38 µg/ml, respectively) were also similar to that of the Bt strain isolated from the commercial product Xentari® for the same three species of Spodoptera (1.94, 1.34, and 2.19 µg/ml, respectively). Since Xentari® is significantly more toxic to Spodoptera spp. than Dipel® and, reciprocally, Dipel® is significantly more toxic against H. armigera than Xentari®, we discuss the potential of the HU4‐2 strain to control all these important lepidopteran pests.  相似文献   

16.
Grass carp reovirus (GCRV), a disaster agent to aquatic animals, belongs to Genus Aquareovirus of family Reoviridea. Sequence analysis revealed GCRV genome segment 8 (s8) was 1 296 bp nucleotides in length encoding an inner capsid protein VP6 of about 43kDa. To obtain in vitro non-fusion expression of a GCRV VP6 protein containing a molecular of fluorescence reporter, the recombinant baculovirus, which contained the GCRVs8 and eGFP (enhanced green fluorescence protein) genes, was constructed by using the Bac-to-Bac insect expression system. In this study, the whole GCRVs8 and eGFP genes, amplified by PCR, were constructed into a pFastBacDual vector under polyhedron (PH) and p10 promoters, respectively. The constructed dual recombinant plasmid (pFbDGCRVs8/eGFP) was transformed into DH10Bac cells to obtain recombinant Bacmid (AcGCRVs8/eGFP) by transposition. Finally, the recombinant bacluovirus (vAcGCRVs8/eGFP) was obtained from transfected Sf9 insect cells. The green fluorescence that was expressed by transfected Sf9 cells was initially observed 3 days post transfection, and gradually enhanced and extended around 5 days culture in P1(Passage1) stock. The stable high level expression of recombinant protein was observed in P2 and subsequent passage budding virus (BV) stock. Additionally, PCR amplification from P1 and amplified P2 BV stock further confirmed the validity of the dual-recombinant baculovirus. Our results provide a foundation for expression and assembly of the GCRV structural protein in vitro. Undergraduate training student from College of Life Sciences, Wuhan University.  相似文献   

17.
White spot syndrome virus (WSSV) is a pathogen that causes considerable mortality of the farmed shrimp, Penaeus monodon. Candidate ‘vaccines’, WSSV envelope protein VP28 and formalin‐inactivated WSSV, can provide short‐lived protection against the virus. In this study, P. monodon was orally intubated with the aforementioned vaccine candidates, and protein expression in the gut of immunised shrimps was profiled. The alterations in protein profiles in shrimps infected orally with live‐WSSV were also examined. Seventeen of the identified proteins in the vaccine and WSSV‐intubated shrimps varied significantly compared to those in the control shrimps. These proteins, classified under exoskeletal, cytoskeletal, immune‐related, intracellular organelle part, intracellular calcium‐binding or energy metabolism, are thought to directly or indirectly affect shrimp's immunity. The changes in the expression levels of crustacyanin, serine proteases, myosin light chain, and ER protein 57 observed in orally vaccinated shrimp may probably be linked to immunoprotective responses. On the other hand, altered expression of proteins linked to exoskeleton, calcium regulation and energy metabolism in WSSV‐intubated shrimps is likely to symbolise disturbances in calcium homeostasis and energy metabolism.  相似文献   

18.
Bacillus thuringiensis (Bt) and transgenic crops carrying cry genes are widely used in the management of lepidopteran and coleopteran pests. However, almost none of the Cry toxins have insecticidal properties against sap-sucking insects, such as planthoppers, leafhoppers and aphids. To understand the low insecticidal activity of Cry1Ac toxin on sap-sucking insects, we investigated two critical steps in the Bt-intoxication cascade: the proteolytic processing of Cry1Ac toxin by gut proteases, and the binding of Cry1Ac to brush border membrane vesicles (BBMV) of Nilaparvata lugens. Proteolytic processing of Cry1Ac protoxin by N. lugens gut proteases resulted in an ~65?kDa product, similar to the expected size of the trypsin-activated Cry1Ac toxin. In addition, activation of cysteine proteases in N. lugens gut increased the efficiency of proteolytic activities in the processing of Cry1Ac. However, feeding N. lugens nymphs with either Cry1Ac protoxin or trypsin-activated Cry1Ac toxin resulted in low mortalities. The LC50 of Cry1Ac protoxin and trypsin-activated Cry1Ac was 198.92 and 450.18?μg/mL, respectively. In vitro binding analysis of BBMV with the pre-activated Cry1Ac showed that Cry1Ac toxin could specifically bind to the BBMV. However, binding competition with 500-fold molar excess GalNAc (N-acetyl-d-galactosamine) suggested that the binding was not mediated by GalNAc-like glycoproteins. These results indicate that Cry1Ac toxin could be successfully processed by the treatment of N. lugens gut proteases. However, the binding of Cry1Ac toxin to the midgut brush border membrane was not mediated by GalNAc-like glycoprotein. This may be responsible for the low susceptibility of N. lugens to Cry1Ac.  相似文献   

19.
Bacillus thuringiensis vegetative insecticidal proteins (Vip3A) have been recently introduced in important crops as a strategy to delay the emerging resistance to the existing Cry toxins. The mode of action of Vip3A proteins has been studied in Spodoptera frugiperda with the aim of characterizing their binding to the insect midgut. Immunofluorescence histological localization of Vip3Aa in the midgut of intoxicated larvae showed that Vip3Aa bound to the brush border membrane along the entire apical surface. The presence of fluorescence in the cytoplasm of epithelial cells seems to suggest internalization of Vip3Aa or a fragment of it. Successful radiolabeling and optimization of the binding protocol for the 125I-Vip3Aa to S. frugiperda brush border membrane vesicles (BBMV) allowed the determination of binding parameters of Vip3A proteins for the first time. Heterologous competition using Vip3Ad, Vip3Ae, and Vip3Af as competitor proteins showed that they share the same binding site with Vip3Aa. In contrast, when using Cry1Ab and Cry1Ac as competitors, no competitive binding was observed, which makes them appropriate candidates to be used in combination with Vip3A proteins in transgenic crops.  相似文献   

20.
Broflanilide is a novel meta-diamide insecticide that acts as a γ-aminobutyric acid-gated chloride channel allosteric modulator. With its unique mode of action, broflanilide has no known cross-resistance with existing insecticides and is expected to be an effective tool for the management of insecticide resistance. Establishing the baseline susceptibility to this insecticide is an essential step for developing and implementing effective resistance management strategies. Here we evaluated the baseline susceptibility to broflanilide for 3 cosmopolitan lepidopteran pest species, Helicoverpa armigera, Plutella xylostella, and Spodoptera frugiperda. Broflanilide exhibited high activity against populations sampled in the major distribution range of these pests in China, with median lethal concentrations (LC50) ranging between 0.209 and 0.684, 0.076 and 0.336, and 0.075 and 0.219 mg/L for H. armigera, P. xylostella, and S. frugiperda, respectively. Among-population variability in susceptibility to broflanilide was moderate for H. armigera (3.3-fold), P. xylostella (4.4-fold), and S. frugiperda (2.9-fold). The recommended diagnostic concentrations for H. armigera, P. xylostella, and S. frugiperda were 8, 4, and 2 mg/L, respectively. Little or no cross-resistance to broflanilide was detected in 3 diamide-resistant strains of P. xylostella and 1 spinosyns-resistant strain of S. frugiperda. Our results provide critical information for the development of effective resistance management programs to sustain efficacy of broflanilide against these key lepidopteran pests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号