首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants often respond to pathogens by sacrificing cells at the infection site. This type of programmed cell death is mimicked by the constitutive pathogene response5 (cpr5) mutant in Arabidopsis in the absence of pathogens, suggesting a role for CPR5 in programmed cell death control. The analysis of the cellular phenotypes of two T-DNA-tagged cpr5 alleles revealed an additional role for CPR5 in the regulation of endoreduplication and cell division. In cpr5 mutant trichomes, endoreduplication cycles stop after two rounds instead of four, and trichome cells have fewer branches than normal. Eventually, cpr5 trichomes die, the nucleus disintegrates, and the cell collapses. Similarly, leaf growth stops earlier than in wild-type, and, frequently, regions displaying spontaneous cell death are observed. The cloning of the CPR5 gene revealed a novel putative transmembrane protein with a cytosolic domain containing a nuclear-targeting sequence. The dual role of CPR5 in cell proliferation and cell death control suggests a regulatory link between these two processes.  相似文献   

2.
Cell differentiation is generally tightly coordinated with the cell cycle, typically resulting in a nondividing cell with a unique differentiated morphology. The unicellular trichomes of Arabidopsis are a well-established model for the study of plant cell differentiation. Here, we describe a new genetic locus, SIAMESE (SIM), required for coordinating cell division and cell differentiation during the development of Arabidopsis trichomes (epidermal hairs). A recessive mutation in the sim locus on chromosome 5 results in clusters of adjacent trichomes that appeared to be morphologically identical 'twins'. Upon closer inspection, the sim mutant was found to produce multicellular trichomes in contrast to the unicellular trichomes produced by wild-type (WT) plants. Mutant trichomes consisting of up to 15 cells have been observed. Scanning electron microscopy of developing sim trichomes suggests that the cell divisions occur very early in the development of mutant trichomes. WT trichome nuclei continue to replicate their DNA after mitosis and cytokinesis have ceased, and as a consequence have a DNA content much greater than 2C. This phenomenon is known as endoreduplication. Individual nuclei of sim trichomes have a reduced level of endoreduplication relative to WT trichome nuclei. Endoreduplication is also reduced in dark-grown sim hypocotyls relative to WT, but not in light-grown hypocotyls. Double mutants of sim with either of two other mutants affecting endoreduplication, triptychon (try) and glabra3 (gl3) are consistent with a function for SIM in endoreduplication. SIM may function as a repressor of mitosis in the endoreduplication cell cycle. Additionally, the relatively normal morphology of multicellular sim trichomes indicates that trichome morphogenesis can occur relatively normally even when the trichome precursor cell continues to divide. The sim mutant phenotype also has implications for the evolution of multicellular trichomes.  相似文献   

3.
Recessive mutations in the SIAMESE (SIM) gene of Arabidopsis thaliana result in multicellular trichomes harboring individual nuclei with a low ploidy level, a phenotype strikingly different from that of wild-type trichomes, which are single cells with a nuclear DNA content of approximately 16C to 32C. These observations suggested that SIM is required to suppress mitosis as part of the switch to endoreplication in trichomes. Here, we demonstrate that SIM encodes a nuclear-localized 14-kD protein containing a cyclin binding motif and a motif found in ICK/KRP (for Interactors of Cdc2 kinase/Kip-related protein) cell cycle inhibitor proteins. Accordingly, SIM was found to associate with D-type cyclins and CDKA;1. Homologs of SIM were detected in other dicots and in monocots but not in mammals or fungi. SIM proteins are expressed throughout the shoot apical meristem, in leaf primordia, and in the elongation zone of the root and are localized to the nucleus. Plants overexpressing SIM are slow-growing and have narrow leaves and enlarged epidermal cells with an increased DNA content resulting from additional endocycles. We hypothesize that SIM encodes a plant-specific CDK inhibitor with a key function in the mitosis-to-endoreplication transition.  相似文献   

4.
The ubiquitin/26S proteasome pathway plays a central role in the degradation of short-lived regulatory proteins to control many cellular events. The Arabidopsis knockout mutant rpt2a, which contains a defect in the AtRPT2a subunit of the 26S proteasome regulatory particle, showed enlarged leaves caused by increased cell size that correlated with increased ploidy caused by extended endoreduplication. To clarify the role of RPT2a in endoreduplication control, trichome development was genetically examined in further detail. RHL1 and GL3 encode proteins that have a role in the positive regulation of endocycle progression in trichomes. The rhl1 mutants are stalled at 8C and have trichomes with only a single branch. The rpt2a mutation did not alter the rhl1 mutant phenotype, and trichomes of double rpt2a rhl1 mutants resembled that of single rhl1 mutants. On the other hand, the rpt2a mutation suppressed the gl3 phenotype (stalled at 16C, two trichome branches), and trichomes of the double rpt2a gl3 mutant resembled those of the wild type (WT) plants. Together, these data suggest that RPT2a functions to negatively regulate endocycle progression following completion of the third endoreduplication step mediated by RHL1 (8C–16C).  相似文献   

5.
Endoreplication, also called endoreduplication, is a modified cell cycle in which DNA is repeatedly replicated without subsequent cell division. Endoreplication is often associated with increased cell size and specialized cell shapes, but the mechanism coordinating DNA content with shape and size remains obscure. Here we identify the product of the BRANCHLESS TRICHOMES (BLT) gene, a protein of hitherto unknown function that has been conserved throughout angiosperm evolution, as a link in coordinating cell shape and nuclear DNA content in endoreplicated Arabidopsis trichomes. Loss-of-function mutations in BLT were found to enhance the multicellular trichome phenotype of mutants in the SIAMESE (SIM) gene, which encodes a repressor of endoreplication. Epistasis and overexpression experiments revealed that BLT encodes a key regulator of trichome branching. Additional experiments showed that BLT interacts both genetically and physically with STICHEL, another key regulator of trichome branching. Although blt mutants have normal trichome DNA content, overexpression of BLT results in an additional round of endoreplication, and blt mutants uncouple DNA content from morphogenesis in mutants with increased trichome branching, further emphasizing its role in linking cell shape and endoreplication.  相似文献   

6.

Background  

The Arabidopsis thaliana CONSTITUTIVE EXPRESSOR OF PATHOGENESIS-RELATED GENES5 (CPR5) gene has been previously implicated in disease resistance, cell proliferation, cell death, and sugar sensing, and encodes a putative membrane protein of unknown biochemical function. Trichome development is also affected in cpr5 plants, which have leaf trichomes that are reduced in size and branch number.  相似文献   

7.
8.
The constitutive expressor of pathogenesis-related genes 5 (CPR5) plays a role in pathogen defence responses, programmed cell death, cell wall biogenesis, seed generation and senescence regulation in plants. Here, we investigated the functional characteristics of CPR5 to long-term heat stress in Arabidopsis with different genotypes: wild type (WT), cpr5 mutant and cpr5/CPR5 complementary transgenic plant. The cpr5 mutant showed increased susceptibility to long-term heat stress, displaying significant decreases in hypocotyl elongation, seedling and inflorescence survival, membrane integrity and photosystem II activity (Fv/Fm) during heat stress. However, the thermotolerance was recovered when cpr5 mutant was transformed with a CPR5 gene. H2O2 accumulation and lipid peroxidation were lower in cpr5/CPR5 plants and WT than in cpr5 mutants after exposure to 36?°C for 5?days. The alleviated oxidative damage was associated with increased activities of superoxide dismutase, catalase, and ascorbate peroxidase. Furthermore, the induced expression of HSP17.6A-CI, HSP101 and HSP70B under long-term heat stress was more substantial in cpr5/CPR5 plants and WT than in cpr5 mutants. These findings suggest that CPR5 plays an important role in thermotolerance of Arabidopsis by regulating the activities of antioxidant enzymes and the expressions of heat shock protein genes.  相似文献   

9.
A majority of the cells in the Arabidopsis hypocotyl undergo endoreduplication. The number of endocycles in this organ is partially controlled by light. Up to two cycles occur in light-grown hypocotyls, whereas in the dark about 30% of the cells go through a third cycle. Is the inhibition of the third endocycle in the light an indirect result of the reduced cell size in the light-grown hypocotyl, or is it under independent light control? To address this question, the authors examined the temporal and spacial patterns of endoreduplication in light- or dark-grown plants and report here on the following observations: (i) during germination two endocycles take place prior to any significant cell expansion; (ii) in the dark the third cycle is completed very early during cell growth; and (iii) a mutation that dramatically reduces cell size does not interfere with the third endocycle. The authors then used mutants to study the way light controls the third endocycle and found that the third endocycle is completely suppressed in far red light through the action of phytochrome A and, to a lesser extent, in red light by phytochrome B. Furthermore, no 16C nuclei were observed in dark-grown constitutive photomorphogenic 1 seedlings. And, finally the hypocotyl of the cryptochrome mutant, hy4, grown in blue light was about three times longer than that of the wild-type without a significant difference in ploidy levels. Together, the results support the view that the inhibition of the third endocycle in light-grown hypocotyls is not the consequence of a simple feed-back mechanism coupling the number of cycles to the cell volume, but an integral part of the phytochrome-controlled photomorphogenic program.  相似文献   

10.
We used tomato genotypes deficient in the jasmonic acid (JA) pathway to study the interaction between the production of herbivore‐induced plant volatiles (HIPVs) that serve as information cues for herbivores as well as natural enemies of herbivores, and the production of foliar trichomes as defence barriers. We found that jasmonic acid‐insensitive1 (jai1) mutant plants with both reduced HIPVs and trichome production received higher oviposition of adult leafminers, which were more likely to be parasitized by the leafminer parasitoids than JA biosynthesis spr2 mutant plants deficient in HIPVs but not trichomes. We also showed that the preference and acceptance of leafminers and parasitoids to trichome‐removed plants from either spr2 or wild‐type (WT) genotypes over trichome‐intact genotypes can be ascribed to the reduced trichomes on treated plants, but not to altered direct and indirect defence traits such as JA, proteinase inhibitor (PI)‐II and HIPVs levels. Although the HIPVs of WT plants were more attractive to adult insects, the insects preferred trichome‐free jai1 plants for oviposition and also had greater reproductive success on these plants. Our results provide strong evidence that antagonism between HIPV emission and trichome production affects tritrophic interactions. The interactions among defence traits are discussed.  相似文献   

11.
12.
The plant hormone ethylene plays various functions in plant growth, development and response to environmental stress. Ethylene is perceived by membrane‐bound ethylene receptors, and among the homologous receptors in Arabidopsis, the ETR1 ethylene receptor plays a major role. The present study provides evidence demonstrating that Arabidopsis CPR5 functions as a novel ETR1 receptor‐interacting protein in regulating ethylene response and signaling. Yeast split ubiquitin assays and bi‐fluorescence complementation studies in plant cells indicated that CPR5 directly interacts with the ETR1 receptor. Genetic analyses indicated that mutant alleles of cpr5 can suppress ethylene insensitivity in both etr1‐1 and etr1‐2, but not in other dominant ethylene receptor mutants. Overexpression of Arabidopsis CPR5 either in transgenic Arabidopsis plants, or ectopically in tobacco, significantly enhanced ethylene sensitivity. These findings indicate that CPR5 plays a critical role in regulating ethylene signaling. CPR5 is localized to endomembrane structures and the nucleus, and is involved in various regulatory pathways, including pathogenesis, leaf senescence, and spontaneous cell death. This study provides evidence for a novel regulatory function played by CPR5 in the ethylene receptor signaling pathway in Arabidopsis.  相似文献   

13.
Arabidopsis gain‐of‐resistance mutants, which show HR‐like lesion formation and SAR‐like constitutive defense responses, were used well as tools to unravel the plant defense mechanisms. We have identified a novel mutant, designated constitutive expresser of PR genes 30 (cpr30), that exhibited dwarf morphology, constitutive resistance to the bacterial pathogen Pseudomonas syringae and the dramatic induction of defense‐response gene expression. The cpr30‐conferred growth defect morphology and defense responses are dependent on ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), PHYTOALEXIN DEFICIENT 4 (PAD4), and NONRACE‐SPECIFIC DISEASE RESISTANCE 1 (NDR1). Further studies demonstrated that salicylic acid (SA) could partially account for the cpr30‐conferred constitutive PR1 gene expression, but not for the growth defect, and that the cpr30‐conferred defense responses were NPR1 independent. We observed a widespread expression of CPR30 throughout the plant, and a localization of CPR30‐GFP fusion protein in the cytoplasm and nucleus. As an F‐box protein, CPR30 could interact with multiple Arabidopsis‐SKP1‐like (ASK) proteins in vivo. Co‐localization of CPR30 and ASK1 or ASK2 was observed in Arabidopsis protoplasts. Based on these results, we conclude that CPR30, a novel negative regulator, regulates both SA‐dependent and SA‐independent defense signaling, most likely through the ubiquitin‐proteasome pathway in Arabidopsis.  相似文献   

14.
15.
Plant cells possess a two-layered immune system consisting of pattern-triggered immunity(PTI)and effector-triggered immunity(ETI), mediated by cell surface pattern-recognition receptors and intracellular nucleotide-binding leucine-rich repeat receptors(NLRs), respectively. The CONSTITUTIVE EXPRESSION OF PR GENES 5(CPR5) nuclear pore complex protein negatively regulates ETI, including ETI-associated hypersensitive response. Here, we show that CPR5 is essential for the activation of various PTI re...  相似文献   

16.
17.
This is an addendum to our recent paper published in The Plant Journal (52:352–61). The major findings were: (1) trichomes on the leaves of gl3-sst sim double mutants developed as large multi-cellular clusters whereas wild type trichomes are composed of single cells; (2) ectopic CYCD3;1 expression in gl3-sst trichomes also resulted in trichome cluster formation; and (3) that GL1 expression is prolonged in the gl3-sst sim trichome clusters. This addendum shows that ectopic CYCD3;1 expression in gl3-sst also enhanced GL1 expression. An analysis of the GL1 promoter found two overlapping potential E2F binding sites in a region of the promoter known to be essential for GL1 function. This finding indicates that GL1 may be directly regulated by the activity of a CYCD3/CDKA complex that phosphorylates E2F-RB bound to the GL1 promoter.Key words: plant cell cycle, endoreduplication, glabra1, plant development  相似文献   

18.
1. Foliar trichomes clearly reduce chewing damage and efficiency of movement by some insect herbivores, but the effect of trichomes on insect oviposition is less well characterised. Trichomes are likely to have particularly strong, negative effects on species that require secure attachment of the egg to the leaf epidermis for successful transition to the feeding stage – a group that includes many leaf mining insects. 2. One such species, Micrurapteryx salicifoliella, must initially enter leaf cells directly from an egg adhered to the cuticle, but later instars can move between leaves and initiate new mines from the leaf exterior. 3. Natural patterns of occurrence by M. salicifoliella were quantified on 10 sympatric Salix species varying in trichome expression to test whether trichomes were associated with reduced oviposition, larval survival and leaf damage. 4. Mean egg density and leaf mining damage were negatively related to mean trichome density across Salix species. Survival of M. salicifoliella from egg to pupa was positively related to trichome density, suggesting that initiation of new mines by late‐instar larvae was not adversely affected by trichomes. There was no evidence that trichomes benefited leaf miner larvae indirectly by decreasing density‐dependent mortality; rather, the positive relationship between trichome density and larval survival may reflect less effective chemical defence by Salix species expressing high trichome density. 5. The results suggest that foliar trichomes serve as an effective defence against M. salicifoliella by deterring oviposition, but do not reduce the survivorship of those individuals that successfully transition from egg to larva.  相似文献   

19.
Despite a number of recent molecular phylogenetic studies on Phlomoides, in terms of trichome morphology the genus is still among the most poorly studied taxa in the family Lamiaceae. In order to test the utility of trichome characters for delimitation of sections, subsection and species of Phlomoides, we examined trichomes of 64 species representing all recognized sections and subsections using stereomicroscopy and scaning electron microscopy. Two basic types of trichomes could be identified: non‐glandular and glandular. Both trichome types can be simple or branched. The glandular trichomes were sessile, short stalked or long stalked. Different kinds of branched trichomes were observed in most species of P. sect. Phlomoides, i.e. symmetrically stellate, stellate with a central long branch, bi‐ or trifurcate. The species of P. sect. Filipendula were mostly covered by simple trichomes. Moreover, variation in trichome characters appears to have particular value, not only for the classification at sectional or subsectional rank, but also for delimitation of species within each section. For example, all studied species of P. subsect. Fulgentes are characterized by various kinds of stellate trichomes, while the trichome variability in P. subsect. Tetragonae was sufficiently high for species discrimination. An ancestral character state reconstruction was performed in order to investigate the evolution of trichome types and it revealed the following evolutionary trends in trichome characters of Phlomoides: 1) branched trichomes are primitive in Phlomoides as compared to simple ones, 2) long simple non‐glandular trichomes are derived as compared to short simple ones and 3) the presence of stalked glandular trichomes is advanced as compared to subsessile or sessile ones.  相似文献   

20.
A homozygous recessive mutant of Arabidopsis thaliana has been selected which displays altered patterns of cellulose deposition. The mutant was selected because leaf and stem trichomes lacked the strong birefringence under polarized light which is characteristic of plant cells which contain highly ordered cellulose in their secondary cell walls. Compared with wild-type A. thaliana, this mutant (designated tbr for trichome birefringence) also displays reduced birefringence in the xylem of the leaf. Direct chemical analyses of root, stem, and leaf tissues, including isolated leaf trichomes, support the conclusion that tbr is impaired in its ability to deposit secondary wall cellulose in specific cell types, most notably in trichomes where the secondary wall appears to be totally absent. Altered patterns of wound-induced callose deposition in trichomes and surrounding cells is another trait which also co-segregates with the tbr mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号