首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
p27(Kip1R) is an isoform of p27(Kip1), having a distinct C-terminus. The sequences of p27(Kip1R) required for nuclear localization and growth inhibition were determined in HeLa cells using a green fluorescence protein (GFP) as a reporter molecule. Region 153-168 and residues K168 and I169 were determined to play a critical role in the nuclear localization of p27(Kip1R). Aliphatic amino acid was found to be a substitute for the basic residue in the typical nuclear localization signal, while its functional substitution was incomplete, thereby causing a significant cytoplasmic retention of p27(Kip1R). p27(Kip1R) is thus the first example of an atypical bipartite nuclear localization signal with aliphatic amino acid as a functional residue. Despite cytoplasmic retention, p27(Kip1R) inhibited the cell growth as well as p27(Kip1), while GFP alone had no effect. The mutants lacking an N-terminus containing the binding regions for cyclins and cyclin-dependent kinases also showed a significant degree of nuclear localization, but failed to inhibit cell growth. The growth inhibition by p27(Kip1R) as well as p27(Kip1) was thus suggested to originate in the common N-terminal region.  相似文献   

3.
p27Kip1 is a critical modulator of cell proliferation by controlling assembly, localization and activity of cyclin-dependent kinase (CDK). p27Kip1 also plays important roles in malignant transformation, modulating cell movement and interaction with the extracellular matrix. A critical p27Kip1 feature is the lack of a stable tertiary structure that enhances its “adaptability” to different interactors and explains the heterogeneity of its function. The absence of a well-defined folding underlines the importance of p27Kip1 post-translational modifications that might highly impact the protein functions. Here, we characterize the metabolism and CDK interaction of phosphoserine10-p27Kip1 (pS10- p27Kip1), the major phosphoisoform of p27Kip1. By an experimental strategy based on specific immunoprecipitation and bidimensional electrophoresis, we established that pS10-p27Kip1 is mainly bound to cyclin E/CDK2 rather than to cyclin A/CDK2. pS10- p27Kip1 is more stable than non-modified p27Kip1, since it is not (or scarcely) phosphorylated on T187, the post-translational modification required for p27Kip1 removal in the nucleus. pS10-p27Kip1 does not bind CDK1. The lack of this interaction might represent a mechanism for facilitating CDK1 activation and allowing mitosis completion. In conclusion, we suggest that nuclear p27Kip1 follows 2 almost independent pathways operating at different rates. One pathway involves threonine-187 and tyrosine phosphorylations and drives the protein toward its Skp2-dependent removal. The other involves serine-10 phosphorylation and results in the elongation of p27Kip1 half-life and specific CDK interactions. Thus, pS10-p27Kip1, due to its stability, might be thought as a major responsible for the p27Kip1-dependent arrest of cells in G1/G0 phase.  相似文献   

4.
为了探讨p27Kip1蛋白和CyclinD1蛋白在非小细胞肺癌(NSCLC)中的表达及意义,收集临床手术切除的非小细胞肺癌组织蜡块64例及正常肺组织10例,应用免疫组化(S-P法)检测组织中p27Kip1蛋白和CyclinD1蛋白的表达,结合临床病理资料和随访资料进行回顾性研究。实验发现NSCLC组织中p27Kip1蛋白表达和CyclinD1蛋白表达均明显不同于正常肺组织(P<0.01)。p27Kip1蛋白表达降低与NSCLC肿瘤大小、病理分级、分期增加、淋巴结转移之间有相关性(P<0.05),但与肿瘤组织学分型无相关性(P>0.05)。CyclinD1蛋白过表达与组织学分型、肿瘤大小、病理分级、临床分期、淋巴结转移无相关性(P>0.05)。p27Kip1蛋白表达与CyclinD1蛋白表达之间呈显著负相关(P<0.01)。cox单因素及多因素分析,p27Kip1蛋白低表达及CyclinD1过表达是影响NSCLC患者预后的主要因素。实验结果显示,NSCLC组织中,p27Kip1蛋白表达降低,而CyclinD1过表达,二者与NSCLC的发生发展机制有关,可作为预后指标,有利于NSCLC患者预后判断及个体化治疗。  相似文献   

5.
Functional genomics studies have led to the discovery of a large amount of non-coding RNAs from the human genome; among them are long non-coding RNAs (lncRNAs). Emerging evidence indicates that lncRNAs could have a critical role in the regulation of cellular processes such as cell growth and apoptosis as well as cancer progression and metastasis. As master gene regulators, lncRNAs are capable of forming lncRNA–protein (ribonucleoprotein) complexes to regulate a large number of genes. For example, lincRNA-RoR suppresses p53 in response to DNA damage through interaction with heterogeneous nuclear ribonucleoprotein I (hnRNP I). The present study demonstrates that hnRNP I can also form a functional ribonucleoprotein complex with lncRNA urothelial carcinoma-associated 1 (UCA1) and increase the UCA1 stability. Of interest, the phosphorylated form of hnRNP I, predominantly in the cytoplasm, is responsible for the interaction with UCA1. Moreover, although hnRNP I enhances the translation of p27 (Kip1) through interaction with the 5′-untranslated region (5′-UTR) of p27 mRNAs, the interaction of UCA1 with hnRNP I suppresses the p27 protein level by competitive inhibition. In support of this finding, UCA1 has an oncogenic role in breast cancer both in vitro and in vivo. Finally, we show a negative correlation between p27 and UCA in the breast tumor cancer tissue microarray. Together, our results suggest an important role of UCA1 in breast cancer.  相似文献   

6.
7.
The cyclin-dependent kinase (CDK) inhibitor p27Kip1 has been shown to regulate cellular proliferation via inhibition of CDK activities. It is now recognized that p27Kip1 can regulate cellular processes through non-canonical, CDK-independent mechanisms. We have developed an inducible p27Kip1 model in cultured cells to explore CDK-independent p27Kip1 regulation of biological processes. We present evidence that p27Kip1 can function in a CDK-independent manner to inhibit entry and/or progression of S phase. Even though this p27Kip1 mechanism is non-canonical it does requires the intact cyclin-binding motif in p27Kip1. We suggest a mechanism similar to that proposed in post-mitotic neural cells whereby p27Kip1 functions to coordinate growth arrest and apoptosis. Our hypothesis supports the concept that p27Kip1 is a gatekeeper for the entry and progression of S phase through interaction with specific protein(s) or via binding to specific DNA sequences in a CDK-independent manner.  相似文献   

8.
PHAP1 (Putative HLA‐DR‐associated protein 1), also termed acidic leucine‐rich nuclear phosphoprotein 32A (ANP32A), Phosphoprotein 32 (pp32) or protein phosphatase 2A inhibitor (I1PP2A), is a multifunctional protein aberrantly expressed in multiple types of human cancers. However, its expression pattern and clinical relevance in human glioma remain unknown. In this study, Western blotting and immunohistochemistry analysis demonstrated PHAP1 protein was highly expressed in glioma patients, especially in those with high‐grade disease. Publicly available data also revealed high levels of PHAP1 were associated with poor prognosis in glioma patients. The functional studies showed that knock‐down of PHAP1 suppressed the proliferation of glioma cells, while overexpression of PHAP1 facilitated it. The iTRAQ proteomic analysis suggested that stathmin might be a potential downstream target of PHAP1. Consistently, PHAP1 knock‐down significantly decreased the expression of stathmin, while overexpression of PHAP1 increased it. Also, the upstream negative regulator, p27, expression levels increased upon PHAP1 knock‐down and decreased when PHAP1 was overexpressed. As a result, the phosphorylated Akt (S473), an upstream regulator of p27, expression levels decreased upon silencing of PHAP1, but elevated after PHAP1 overexpression. Importantly, we demonstrate the p27 down‐regulation, stathmin up‐regulation and cell proliferation acceleration induced by PHAP1 overexpression were dependent on Akt activation. In conclusion, the above results suggest that PHAP1 expression is elevated in glioma patients, which may accelerate the proliferation of glioma cells by regulating the Akt/p27/stathmin pathway.  相似文献   

9.
We describe an efficient inducible gene expression system in HEK.EBNA cells, a well-established cell system for the rapid transient expression of research-tool proteins. The transgene control system of choice is the novel acetaldehyde-inducible regulation (AIR) technology, which has been shown to modulate transgene levels following exposure of cells to acetaldehyde. For application in HEK.EBNA cells, AlcR transactivator plasmids were constructed and co-expressed with the secreted alkaline phosphatase (SEAP) gene under the control of a chimeric mammalian promoter (P(AIR)) for acetaldehyde-regulated expression. Several highly inducible transactivator cell lines were established. Adjustable transgene induction by gaseous acetaldehyde led to high induction levels and tight repression in transient expression trials and in stably transfected HEK.EBNA cell lines. Thus, the AIR technology can be used for inducible expression of any desired recombinant protein in HEK.EBNA cells. A possible application for inducible gene expression is a controlled proliferation strategy. Clonal HEK.EBNA cell lines, expressing the fungal transactivator protein AlcR, were engineered for gas-adjustable expression of the cell-cycle regulator p27(Kip1). We show that expression of p27(Kip1) via transient or stable transfection led to a G1-phase specific growth arrest of HEK.EBNA cells. Furthermore, production pools engineered for gas-adjustable expression of p27(Kip1) and constitutive expression of SEAP showed enhanced productive capacity.  相似文献   

10.
11.
Our previous works revealed that human ribosomal protein S13 (RPS13) was up‐regulated in multidrug‐resistant gastric cancer cells and overexpression of RPS13 could protect gastric cancer cells from drug‐induced apoptosis. The present study was designed to explore the role of RPS13 in tumorigenesis and development of gastric cancer. The expression of RPS13 in gastric cancer tissues and normal gastric mucosa was evaluated by immunohistochemical staining and Western blot analysis. It was found RPS13 was expressed at a higher level in gastric cancer tissues than that in normal gastric mucosa. RPS13 was then genetically overexpressed in gastric cancer cells or knocked down by RNA interference. It was demonstrated that up‐regulation of RPS13 accelerated the growth, enhanced in vitro colony forming and soft agar cologenic ability and promoted in vivo tumour formation potential of gastric cancer cells. Meanwhile, down‐regulation of RPS13 in gastric cancer cells resulted in complete opposite effects. Moreover, overexpression of RPS13 could promote G1 to S phase transition whereas knocking down of RPS13 led to G1 arrest of gastric cancer cells. It was further demonstrated that RPS13 down‐regulated p27kip1 expression and CDK2 kinase activity but did not change the expression of cyclin D, cyclin E, CDK2, CDK4 and p16INK4A. Taken together, these data indicate that RPS13 could promote the growth and cell cycle progression of gastric cancer cells at least through inhibiting p27kip1 expression.  相似文献   

12.
Engagement of mIgM induces G1 arrest and apoptosis in immature B cells. The biochemical mechanism(s) regulating the cell death process are poorly understood. Cross-linking of CD72 (a B cell co-receptor) with anti-CD72 antibody was shown to protect B cells from apoptosis. We investigated the molecular mechanism involved in apoptosis preventing signaling mediated by CD72 ligation using a derivative (WEHIdelta) of the WEHI231 cell line which is representative of immature B cells. Apoptotic WEHIdelta cells following cross-linking of mIgM demonstrate a dramatic loss of c-Myc protein after transient up-regulation. In contrast, pre-ligation of CD72 was able to sustain c-Myc expression after transient up-regulation. Cross-linking of mIgM of WEHIdelta cells causes accumulation of the Cdk inhibitor, p27(Kip1). CD72 pre-ligation was shown to inhibit the accumulation of p27(Kip1) protein. Moreover, NF-kappaB activity was not suppressed in WEHIdelta cells after mIgM cross-linking when the cells were pre-treated with anti-CD72 antibody. These results strongly suggest that the apoptosis preventing signal evoked by CD72 ligation is delivered through the pathway of NF-kappaB, c-Myc, p27(Kip1) and cyclin.  相似文献   

13.
The clinical manifestations of human glioma are known to be diverse, ranging from aggressive growth and invasion to apparent dormancy; however, the molecular mechanism underlying this diversity has been largely unexplored. In the present study, we characterized four human glioma cell lines, T98G, A172, U251, and NAC6, each of which has distinct growth properties. A172 and U251 cells continue to grow after confluency, whereas the growth of T98G and NAC6 cells is contact inhibited. Northern and western blot analyses revealed that at high cell density, the expression of p27Kip1 cyclin-dependent kinase inhibitor was dramatically enhanced at both the RNA and the protein levels in T98G and NAC6 cells but not in A172 or U251. These facts together with the finding that overexpression of p27Kip1 caused G1 arrest in A172 and T98G cells suggest that the induction of p27Kip1 represents an important determinant of growth at high cell density. Immunohistochemical analyses of 42 primary gliomas revealed an inverse correlation between the level of p27 protein and the Ki-67 proliferative index. Kaplan-Meier plots demonstrated that a low level of p27 in tumors is associated with decreased overall survival. Thus, disrupted regulation of p27 expression at high cell density may play an important role in determining the clinical behavior of human gliomas as well as the prognosis for glioma patients.  相似文献   

14.
15.
16.
A combination of extrinsic hematopoietic growth regulators, such as stem cell factor (SCF), interleukin (IL)-3 and IL-6, can induce division of quiescent hematopoietic stem cells (HSCs), but it usually impairs HSCs' self-renewal ability. However, intrinsic negative cell cycle regulators, such as p18INK4c (p18) p27Kip1 (p27) and MAD1, can regulate the self-renewal of HSCs. It is unknown whether the removal of some extrinsic regulators and the knockdown of intrinsic negative cell cycle regulators via RNA interference (RNAi) induce ex vivo expansion of the HSCs. To address this question, a lentiviral vector-based RNAi tool was developed to produce two copies of small RNA that target multiple genes to knockdown the intrinsic negative cell cycle regulators pl8, p27 and MAD1. Colony-forming cells, long-term culture-initiating cells (LTC-IC) and engraftment assays were used to evaluate the effects of extrinsic and intrinsic regulators. Results showed that the medium with only SCF, but without IL-3 and IL-6, could maintain the sca-1+c-kit+ bone marrow cells with high LTC-IC frequency and low cell division. However, when the sca-1+c-kit+ bone marrow cells were cultured in a medium with only SCF and simultaneously knocked down the expression of pl8, p27 and MAD1 via the lentiviral vector-based RNAi, the cells exhibited both high LTC-IC frequency and high cell division, though engraftment failed. Thus, the simultaneous knockdown of pl8, p27 and MAD1 with a medium of only SCF can induce LTC-IC expansion despite the loss of engraftment ability.  相似文献   

17.
18.
The tumor suppressor activity of p27Kip1 takes place in the cell nucleus by inhibitory binding to cyclin/CDK complexes. p27Kip1 can also be localized in the cytoplasm, where it has been proposed to have oncogenic properties. Here, we describe a novel role for cytoplasmic p27Kip1 which could account for its activity as an oncoprotein by negative regulation of the PTEN tumor suppressor. p27Kip1 physically interacted with the open conformation of PTEN, which is competent to enter the nucleus. In mammalian cells, cytoplasmic p27Kip1 retained to nuclear-targeted PTEN in the cytoplasm. This retention was exerted by the C-terminal p27Kip1 region, and was independent of cyclin/CDK-binding. The nuclear accumulation of PTEN triggered by pro-apoptotic TNFα treatment was abolished by cytoplasmic p27Kip1. Furthermore, conformationally-open PTEN displayed diminished protein stability and pro-apoptotic activity in the presence of cytoplasmic p27Kip1. Our results support a conformationally-dependent model of cytoplasmic retention and negative regulation of the activity of nuclear PTEN by oncogenic cytoplasmic p27Kip1, and suggest the existence of reciprocal mechanisms to regulate the levels of both p27Kip1 and PTEN.  相似文献   

19.
The cyclin dependent kinase inhibitor p27 plays an important role in controlling the eukaryotic cell cycle by regulating progression through G1 and entry into S phase. It is often elevated during differentiation and under conditions of cellular stress. In contrast, it is commonly downregulated in cancer cells and its levels are generally inversely correlated with favorable prognosis. The cellular levels of p27 are regulated, in part, by translational control mechanisms. The 5′-untranslated region (5′-UTR) of the p27 mRNA harbors an internal ribosome entry site (IRES) which may facilitate synthesis of p27 in certain conditions. In this study, Far Upstream Element (FUSE) Binding Protein 1 (FBP1) was shown to directly bind to the human p27 5′-UTR and to promote IRES activity. An eight-nucleotide element downstream of a U-rich region within the 5′-UTR was important for FBP1 binding and p27 IRES activity. Overexpression of FBP1 enhanced endogenous p27 levels and stimulated translation initiation. In contrast, repression of FBP1 by siRNA transfection downregulated endogenous p27 protein levels. Using rabbit reticulocyte lysates, FBP1 stimulated p27 mRNA translation in vitro. The central domain of FBP1, containing four K homology motifs, was required for p27 5′-UTR RNA binding and the N terminal domain was important for translational activation. These findings indicate that FBP1 is a novel activator of p27 translation upon binding to the 5′-UTR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号