首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two different patterns of the condensation and chondrification of the limbs of tetrapods are known from extensive studies on their early skeletal development. These are on the one hand postaxial dominance in the sequential formation of skeletal elements in amniotes and anurans, and on the other, preaxial dominance in urodeles. The present study investigates the relative sequence of ossification in the fore‐ and hindlimbs of selected tetrapod taxa based on a literature survey in comparison to the patterns of early skeletal development, i.e. mesenchymal condensation and chondrification, representing essential steps in the late stages of tetrapod limb development. This reveals the degree of conservation and divergence of the ossification sequence from early morphogenetic events in the tetrapod limb skeleton. A step‐by‐step recapitulation of condensation and chondrification during the ossification of limbs can clearly be refuted. However, some of the deeper aspects of early skeletal patterning in the limbs, i.e. the general direction of development and sequence of digit formation are conserved, particularly in anamniotes. Amniotes show a weaker coupling of the ossification sequence in the limb skeleton with earlier condensation and chondrification events. The stronger correlation between the sequence of condensation/chondrification and ossification in the limbs of anamniotes may represent a plesiomorphic trait of tetrapods. The pattern of limb ossification across tetrapods also shows that some trends in the sequence of ossification of their limb skeleton are shared by major clades possibly representing phylogenetic signals. This review furthermore concerns the ossification sequence of the limbs of the Palaeozoic temnospondyl amphibian Apateon sp. For the first time this is described in detail and its patterns are compared with those observed in extant taxa. Apateon sp. shares preaxial dominance in limb development with extant salamanders and the specific order of ossification events in the fore‐ and hindlimb of this fossil dissorophoid is almost identical to that of some modern urodeles.  相似文献   

2.
The hyomandibular of Eusthenopteron foordi Whiteaves is briefly described and an attempt is made to reconcile discrepancies between previous accounts. The course of the branches of the truncus hyoideo-mandibularis (facial nerve VII) is discussed. The early evolution of the tetrapod stapes is considered in connection with the uncoupling of the head from the trunk and subsequent reduction in size ot the semicircular canals. The principal morphological character which distinguishes the stapes from the hyomandibular is found to be related to the course of the orbital (stapedial) artery and the truncus hyoideo-mandibularis.  相似文献   

3.
Evolution of the tetrapod ear: an analysis and reinterpretation   总被引:1,自引:0,他引:1  
The dominant view of tetrapod otic evolution–the “standard view”–holds that the tympanum developed very early in tetrapod history and is homologous in all tetrapods and that the opercular process of the rhipidistian hyomandibula is homologous to the tympanic process of the stapes in lower tetrapods. Under that view, the labyrinthodont amphibians of the Paleozoic are usually considered ancestral to reptiles, and thus the “otic notch” of labyrinthodonts and the tympanum it presumably contained form the starting-point for middle ear evolution in reptiles. Four problems have classically been identified with the standard view: the differing relationships of the internal mandibular branch of N. VII (chorda tympani) to the processes of the stapes in amniotes and anurans; the differing orientations of the stapes in key fossil and living groups; the location of the tympanum in early fossil reptiles; and the transferral of the tympanum, during the origin of mammals, from the stapes to the articular bone of the lower jaw. An examination of these problems and of the solutions proposed under the standard view reveals the ad hoc, and therefore unsatisfactory, nature of the proposed solutions. To organize and review alternative hypotheses of otic evolution an analytical table is constructed, using three characters (tympanic process, Nerve VII, tympanum), each with two possible states. A total of eight hypotheses about middle ear evolution are possible under this system, one of which is the standard view. The seven “non-standard” hypotheses, only five of which have been argued in the literature, are briefly examined. Six of the “non-standard” hypotheses appear unattractive for various reasons, including reliance on ad hoc arguments. The seventh was first proposed by Gaupp in 1898. It is today almost universally ignored but apparently largely for historical rather than scientific reasons. This hypothesis, her called the “alternative view”, appears to rest on assumptions equally as plausible as those of the standard view. Moreover, it offers a solution of the problems associated with the standard view without, apparently, raising any similarly serious problems. This paper compares the standard and alternative views of middle ear evolution in detail. Comparison proceeds on two levels. On one level, they are compared in terms of the hypotheses of phyletic tetrapod relationships each promotes and how strongly each supports its hypothesis. Both views promote the same hypothesis of tetrapod relationships. The alternative view is the more parsimonious, but the difference is not considered sufficient to provide a choice. On another level, the two views are compared in terms of their implications for: (1) the evolution of relative and absolute auditory perceptive ability; (2) the origin of reptiles; (3) the evolution of the suspensorium and cranial kinesis; and (4) the origin and evolution of recent amphibians. The nature of the data required for a test of the implications of the two views is specified in each case. Where data are available. the alternative view is consistent and the standard view is inconsistent with these data. We conclude that the alternative view is the preferable hypothesis of middle-ear evolution. This conclusion implies the following: the tympanic membranes and the tympanic processes of the stapes in recent mammals, reptiles + birds. and frogs. are not homologous; the evolution of “special periotic systems” in the ancestors of amphibians and amniotes were independent events and preceded the evolution of tympanic membranes; the amphibian tympanic membrane. probably including that of labyrinthodonts. is not ancestral to that of amniotes. and that labyiinthodonts with an otic notch are not suitable as amniote ancestors; the stapes of early reptiles functioned primarily as part of the jaw suspension rather than in hearing; the mechanisms and abilities of sound perception in recent tetrapods are likely to be diverse rather than forming parts of a cline; and the lack of a tympanum in Gymnophiona and Caudata may be a retention of a primitive condition.  相似文献   

4.
5.
The response of the Earth’s biota to global change is of fundamental interest to paleontologists, but patterns of change in paleontologic data are also of interest to a wider spectrum of Earth scientists in that those patterns are of great significance in constraining hypotheses that attempt to explain physical changes in the Earth’s environment. The Cretaceous–Tertiary (K–T) boundary is a case in point. Some paleontologists have criticized the bolide impact hypothesis, not because they deny the impact but because the proposed effects of that impact do not always conform to the available paleontological data. Benthic foraminifera are of particular interest in this context because it has been suggested for over 20 years that shallow-water benthic foraminifera were affected more severely than deep-water benthic foraminifera by events at the K–T boundary. This observation adds to the fact of planktonic foraminiferal extinction and indicates that K–T boundary environmental effects were largely restricted to shallow waters. In this paper I review all published works on smaller benthic foraminifera at the K–T boundary and conclude the following. (1) Shallow-water benthic foraminifera were not more severely affected than deeper dwelling species. True extinction, as opposed to local extinction and/or mass mortality, is generally quite low no matter what the water depth. (2) The data are not sufficient in quality, quantity and geographic range to conclude that there is a latitudinal pattern of extinction. (3) In general, biotic changes (such as they are) begin before the boundary in shallow and intermediate depth waters and at the boundary in deep water. Disagreements about the placement of the boundary and the presence, absence and duration of hiatuses hinder more precise conclusions. (4) There appears to be preferential survivorship of epifaunal species into the early Danian with a short interval dominated by infaunal taxa in the earliest Danian. This pattern can best be explained by short-lived input of increased amounts of organic matter at the boundary followed by a sudden collapse of primary productivity and, hence, major reduction or cessation of organic flux to the seafloor. In summary, based on the current dataset, smaller benthic foraminifera, no matter whether they lived in shallow or deep waters, high or low latitudes, or infaunal or epifaunal microhabitats, survived the environmental events across the K–T boundary quite well. Mass extinction does not characterize this group of organisms at this time.  相似文献   

6.
7.
Cardiac development is reliant upon the spatial and temporal regulation of both genetic and chemical signals. Central to the communication of these signals are direct interactions between cells and their surrounding environment. The extracellular matrix (ECM) plays an integral role in cell communication and tissue growth throughout development by providing both structural support and chemical signaling factors. The present review discusses elements of cell–cell and cell–ECM interactions involved in cardiogenesis, and how disruption of these interactions can result in numerous heart defects. Examining the relationships between cells and their immediate environment has implications for novel and existing therapeutic strategies to combating congenital disorders. Birth Defects Research (Part C) 90:1–7, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Sperm morphology is incredibly diverse, even among closely related species, yet the coevolution between males and females of fertilization recognition systems is necessary for successful karyogamy (male and female pronuclear fusion). In most species, the entire sperm enters the egg during fertilization so sperm morphological diversity may impact the intracellular sperm–egg interactions necessary for karyogamy. We quantified morphological variation of sperm inside eggs prior to and following karyogamy in several species of Drosophila to understand whether evolution of sperm morphology could influence intracellular sperm–egg interactions (ISEIs). We measured seven parameters that describe ISEIs among species to determine whether these parameters varied both within a species across development and across species at the same developmental stage. We used heterospecific crosses to test the relative role of male origin, female origin, and interaction between the male and female in determining ISEIs. We found that sperm shape changed within a species as development proceeded and, at particular development stages, species varied in some ISEIs. Parental origin had an effect on some ISEIs, with a general trend for a stronger female effect. Overall, our findings identify conserved and variable ISEIs among species and demonstrate the potential to contribute understanding to gamete evolution and development.  相似文献   

9.
In scientific research, many hypotheses relate to the comparison of two independent groups. Usually, it is of interest to use a design (i.e., the allocation of sample sizes m and n for fixed ) that maximizes the power of the applied statistical test. It is known that the two‐sample t‐tests for homogeneous and heterogeneous variances may lose substantial power when variances are unequal but equally large samples are used. We demonstrate that this is not the case for the nonparametric Wilcoxon–Mann–Whitney‐test, whose application in biometrical research fields is motivated by two examples from cancer research. We prove the optimality of the design in case of symmetric and identically shaped distributions using normal approximations and show that this design generally offers power only negligibly lower than the optimal design for a wide range of distributions.  相似文献   

10.
The Upper Permian seymouriamorph tetrapod Karpinskiosaurus from European Russia includes two species: Karpinskiosaurus secundus and Karpinskiosaurus ultimus. Karpinskiosaurus secundus is represented by two specimens with skull lengths of about 75 mm. All specimens of K. ultimus are smaller than those of K. secundus. Revision of the cranial anatomy of all previously known and several new specimens of Karpinskiosaurus shows that the specimens of K. secundus and most of the specimens of K. ultimus represent the ontogenetic series of one species: K. secundus. The holotype specimen of K. ultimus requires revision, with the aim to find out whether it represents a second species of Karpinskiosaurus or not. The available material permits new reconstructions of the largest, holotype skull, and one smaller skull with a length of about 36 mm. Karpinskiosaurus secundus is included in a cladistic analysis for the first time here. The analysis shows it to form a sister taxon to Discosauriscidae. The clade comprising Karpinskiosaurus secundus plus Discosauriscidae forms a sister group to Seymouriidae. Karpinskiosaurus secundus has a large postorbital and a short preorbital region, and the orbits are placed in the posterior portion of the anterior half of the skull length. Among all seymouriamorphs, such cranial proportions are exhibited only by the largest known specimens of Discosauriscus austriacus. None of the specimens of K. secundus described here exhibits the presence of sensory grooves; thus, all specimens composing the ontogenetic sequence of K. secundus are considered to be terrestrial. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010.  相似文献   

11.
Protein–protein interactions play central roles in physiological and pathological processes. The bases of the mechanisms of drug action are relevant to the discovery of new therapeutic targets. This work focuses on understanding the interactions in protein–protein–ligands complexes, using proteins calmodulin (CaM), human calcium/calmodulin‐dependent 3′,5′‐cyclic nucleotide phosphodiesterase 1A active human (PDE1A), and myosin light chain kinase (MLCK) and ligands αII–spectrin peptide (αII–spec), and two inhibitors of CaM (chlorpromazine (CPZ) and malbrancheamide (MBC)). The interaction was monitored with a fluorescent biosensor of CaM (hCaM M124C–mBBr). The results showed changes in the affinity of CPZ and MBC depending on the CaM–protein complex under analysis. For the Ca2+–CaM, Ca2+–CaM–PDE1A, and Ca2+–CaM–MLCK complexes, CPZ apparent dissociation constants (Kds) were 1.11, 0.28, and 0.55 μM, respectively; and for MBC Kds were 1.43, 1.10, and 0.61 μM, respectively. In competition experiments the addition of calmodulin binding peptide 1 (αII–spec) to Ca2+hCaM M124C–mBBr quenched the fluorescence (Kd = 2.55 ± 1.75 pM) and the later addition of MBC (up to 16 μM) did not affect the fluorescent signal. Instead, the additions of αII–spec to a preformed Ca2+hCaM M124C–mBBr–MBC complex modified the fluorescent signal. However, MBC was able to displace the PDE1A and MLCK from its complex with Ca2+–CaM. In addition, docking studies were performed for all complexes with both ligands showing an excellent correlation with experimental data. These experiments may help to explain why in vivo many CaM drugs target prefer only a subset of the Ca2+–CaM regulated proteins and adds to the understanding of molecular interactions between protein complexes and small ligands. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
An easy and effective strategy for synthesizing a ratiometric fluorescent nanosensor has been demonstrated in this work. Novel fluorescent BSA–AuNPs@Tb–AMP (BSA, bovine serum albumin; AMP, adenosine 5′‐monophosphate; AuNPs, Au nanoparticles) metal–organic framework (MOF) nanostructures were synthesized by encapsulating BSA–AuNPs into Tb–AMP MOFs for the detection of 2,6‐pyridinedicarboxylic acid (DPA) and Hg2+. DPA could strongly co‐ordinate with Tb3+ to replace water molecules from the Tb3+ center and accordingly enhanced the fluorescence of Tb–AMP MOFs. The fluorescence of BSA–AuNPs at 405 nm remained constant. While the fluorescence of BSA–AuNPs at 635 nm was quenched after Hg2+ was added, the fluorescence of Tb–AMP MOFs remained constant. Accordingly, a ratiometric fluorescence nanosensor was constructed for detection of DPA and Hg2+. The ratiometric nanosensor exhibited good selectivity to DPA over other substances. The F545/F405 linearly increased with increase of DPA concentration in the range of 50 nM to 10 μM with a detection limit as low as 17.4 nM. F635/F405 increased linearly with increase of Hg2+ concentration ranging from 50 nM to 1 μM with a detection limit as low as 20.9 nM. Additionally, the nanosensor could be successfully applied for the determination of DPA and Hg2+ in running water.  相似文献   

13.
14.
Extinction risk in the modern world and extinction in the geological past are often linked to aspects of life history or other facets of biology that are phylogenetically conserved within clades. These links can result in phylogenetic clustering of extinction, a measurement comparable across different clades and time periods that can be made in the absence of detailed trait data. This phylogenetic approach is particularly suitable for vertebrate taxa, which often have fragmentary fossil records, but robust, cladistically‐inferred trees. Here we use simulations to investigate the adequacy of measures of phylogenetic clustering of extinction when applied to phylogenies of fossil taxa while assuming a Brownian motion model of trait evolution. We characterize expected biases under a variety of evolutionary and analytical scenarios. Recovery of accurate estimates of extinction clustering depends heavily on the sampling rate, and results can be highly variable across topologies. Clustering is often underestimated at low sampling rates, whereas at high sampling rates it is always overestimated. Sampling rate dictates which cladogram timescaling method will produce the most accurate results, as well as how much of a bias ancestor–descendant pairs introduce. We illustrate this approach by applying two phylogenetic metrics of extinction clustering (Fritz and Purvis's D and Moran's I) to three tetrapod clades across an interval including the Permo‐Triassic mass extinction event. These groups consistently show phylogenetic clustering of extinction, unrelated to change in other quantitative metrics such as taxonomic diversity or extinction intensity.  相似文献   

15.
The neck and trunk regionalization of the presacral musculoskeletal system in snakes and other limb‐reduced squamates was assessed based on observations on craniovertebral and body wall muscles. It was confirmed that myological features characterizing the neck in quadrupedal squamates (i.e., squamates with well‐developed limbs) are retained in all examined snakes, contradicting the complete lack of the neck in snakes hypothesized in previous studies. However, the posterior‐most origins of the craniovertebral muscles and the anterior‐most bony attachments of the body wall muscles that are located at around the neck–trunk boundary in quadrupedal squamates were found to be dissociated anteroposteriorly in snakes. Together with results of a recent study that the anterior expression boundaries of Hox genes coinciding with the neck–trunk boundary in quadrupedal amniotes were dissociated anteroposteriorly in a colubrid snake, these observations support the hypothesis that structures usually associated with the neck–trunk boundary in quadrupedal squamates are displaced relative to one another in snakes. Whereas certain craniovertebral muscles are elongated in some snakes, results of optimization on an ophidian cladogram show that the most recent common ancestor of extant snakes would have had the longest craniovertebral muscle, M. rectus capitis anterior, that is elongated only by several segments compared with that of quadrupedal squamates. Therefore, even such a posteriorly displaced “cervical” characteristic plesiomorphically lies fairly anteriorly in the greatly elongated precloacal region of snakes, suggesting that the trunk, not the neck, would have contributed most to the elongation of the snake precloacal region. A similar dissociation of structures usually associated with the neck–trunk boundary in quadrupedal squamates is observed in limb‐reduced squamates, suggesting that these forms and snakes may share a developmental mechanism producing modifications in the anterior–posterior patterning associated with body elongation. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
In this paper, a sensitive resonance light scattering (RLS) method for the determination of protein is reported. In the Tris–HCl (pH 7.50) buffer, protein enhanced the RLS intensity of the Y3+–2‐thenoyltrifluoroacetone (TTA)–sodium dodecyl sulphate (SLS) system. The enhanced RLS intensities were in proportion to the concentrations of proteins in the range 8.0 × 10?9–1.0 × 10?5 g/mL for BSA, 1.0 × 10–8–1.0 × 10?5 g/mL for HSA and 1.0 × 10–8–1.0 × 10?6 g/mL for EA, and their detection limits were 5.0, 5.4 and 6.7 ng/mL, respectively. Actual samples were satisfactorily determined. The interaction mechanism was also studied. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Bone microanatomy appears to track changes in various physiological or ecological properties of the individual or the taxon. Analyses of sections of the tibia of 99 taxa show a highly significant (P 相似文献   

18.
Atomically dispersed Fe–N–C catalysts are considered the most promising precious‐metal‐free alternative to state‐of‐the‐art Pt‐based oxygen reduction electrocatalysts for proton‐exchange membrane fuel cells. The exceptional progress in the field of research in the last ≈30 years is currently limited by the moderate active site density that can be obtained. Behind this stands the dilemma of metastability of the desired FeN4 sites at the high temperatures that are believed to be a requirement for their formation. It is herein shown that Zn2+ ions can be utilized in the novel concept of active‐site imprinting based on a pyrolytic template ion reaction throughout the formation of nitrogen‐doped carbons. As obtained atomically dispersed Zn–N–Cs comprising ZnN4 sites as well as metal‐free N4 sites can be utilized for the coordination of Fe2+ and Fe3+ ions to form atomically dispersed Fe–N–C with Fe loadings as high as 3.12 wt%. The Fe–N–Cs are active electocatalysts for the oxygen reduction reaction in acidic media with an onset potential of E0 = 0.85 V versus RHE in 0.1 m HClO4. Identical location atomic resolution transmission electron microscopy imaging, as well as in situ electrochemical flow cell coupled to inductively coupled plasma mass spectrometry measurements, is employed to directly prove the concept of the active‐site imprinting approach.  相似文献   

19.
Consumer–resource interactions are fundamental components of ecological communities. Classic features of consumer–resource models are that temporal dynamics are often cyclic, with a ¼‐period lag between resource and consumer population peaks. However, there are few published empirical examples of this pattern. Here, we show that many published examples of consumer–resource cycling show instead patterns indicating eco‐evolutionary dynamics. When prey evolve along a trade‐off between defence and competitive ability, two‐species consumer–resource cycles become longer and antiphase (half‐period lag, so consumer maxima coincide with minima of the resource species). Using stringent criteria, we identified 21 two‐species consumer–resource time series, published between 1934 and 1997, suitable to investigate for eco‐evolutionary dynamics. We developed a statistical method to probe for a transition from classic to eco‐evolutionary cycles, and find evidence for eco‐evolutionary type cycles in about half of the studies. We show that rapid prey evolution is the most likely explanation for the observed patterns.  相似文献   

20.
Human–livestock–wildlife interactions have increased in Kenyan rangelands in recent years, but few attempts have been made to evaluate their impact on the rangeland habitat. This study identified drivers of increased human–livestock–wildlife interactions in the Meru Conservation Area between 1980 and 2000 and their effects on the vegetation community structure. The drivers were habitat fragmentation, decline in pastoral grazing range, loss of wildlife dispersal areas and increase in livestock population density. Agricultural encroachment increased by over 76% in the western zone adjoining Nyambene ranges and the southern Tharaka area, substantially reducing the pastoral grazing range and wildlife dispersal areas. Livestock population increased by 41%, subjecting areas left for pastoral grazing in the northern dispersal area to prolonged heavy grazing that gave woody plant species a competitive edge over herbaceous life‐forms. Consequently, open wooded grassland, which was the dominant vegetation community in 1980, decreased by c. 40% as bushland vegetation increased by 42%. A substantial proportion of agro pastoralists were encountered around Kinna and Rapsu, areas that were predominantly occupied by pastoralists three decades ago, indicating a possible shift in land use in order to spread risks associated with habitat alterations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号