首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Excessive activation of pro‐inflammatory M1 macrophages following acute myocardial infarction (MI) aggravates adverse cardiac remodelling and heart dysfunction. There are two break points in the tricarboxylic acid cycle of M1 macrophages, and aspartate‐arginosuccinate shunt compensates them. Aminooxyacetic acid (AOAA) is an inhibitor of aspartate aminotransferase in the aspartate‐arginosuccinate shunt. Previous studies showed that manipulating macrophage metabolism may control macrophage polarization and inflammatory response. In this study, we aimed to clarify the effects of AOAA on macrophage metabolism and polarization and heart function after MI. In vitro, AOAA inhibited lactic acid and glycolysis and enhanced ATP levels in classically activated M1 macrophages. Besides, AOAA restrained pro‐inflammatory M1 macrophages and promoted anti‐inflammatory M2 phenotype. In vivo, MI mice were treated with AOAA or saline for three consecutive days. Remarkably, AOAA administration effectively inhibited the proportion of M1 macrophages and boosted M2‐like phenotype, which subsequently attenuated infarct size as well as improved post‐MI cardiac function. Additionally, AOAA attenuated NLRP3‐Caspase1/IL‐1β activation and decreased the release of IL‐6 and TNF‐α pro‐inflammatory cytokines and reciprocally increased IL‐10 anti‐inflammatory cytokine level in both ischaemic myocardium and M1 macrophages. In conclusion, short‐term AOAA treatment significantly improves cardiac function in mice with MI by balancing macrophage polarization through modulating macrophage metabolism and inhibiting NLRP3‐Caspase1/IL‐1β pathway.  相似文献   

2.
The adipose tissue is an active endocrine organ that harbours not only mature and developing adipocytes but also a wide array of immune cells, including macrophages, a key immune cell in determining metabolic functionality. With adipose tissue expansion, M1 pro‐inflammatory macrophage infiltration increases, activates other immune cells, and affects lipid trafficking and metabolism, in part via inhibiting mitochondrial function and increasing reactive oxygen species (ROS). The pro‐inflammatory cytokines produced and released interfere with insulin signalling, while inhibiting M1 macrophage activation improves systemic insulin sensitivity. In healthy adipose tissue, M2 alternative macrophages predominate and associate with enhanced lipid handling and mitochondrial function, anti‐inflammatory cytokine production, and inhibition of ROS. The sequence of events leading to macrophage infiltration and activation in adipose tissue remains incompletely understood but lipid handling of both macrophages and adipocytes appears to play a major role.  相似文献   

3.
M1 macrophages serve one edge as proinflammatory and M2 macrophages serve the other edge as an anti‐inflammatory macrophage. It appears that a related “switch” in macrophage morphology may also happen in the course of atherosclerosis, which has not yet been elucidated. An atherogenic diet (AD) was given to rats, and induction of macrophage differentiation and the nuclear localization of nuclear factor‐kappa B (NFκB) were investigated by Western blot and immunofluorescence. Chemokines were analyzed using an antibody array with 32 target proteins. M2 macrophage transformation was confirmed in diosgenin‐treated aorta by immunofluorescence and was validated in vitro using THP‐1 cells. MAC387 (macrophage marker) and NFκBp65 (inflammatory hub) were upregulated in oxidatively‐modified low‐density lipoprotein (OxyLDL) and AD‐induced condition. Macrophage differentiation, which induced the formation of inflammatory mediators, was not significantly suppressed by the inhibition of NFκB using dexamethasone. M1 macrophage polarization was identified in OxyLDL‐induced monocytes, which are proinflammatory in nature, whereas M2 macrophage polarization was noticed in diosgenin‐treated monocytes, which exhibit anti‐inflammatory properties. M1‐and M2‐specific chemokines were analyzed using chemokine antibody array. Furthermore, the expression of proinflammatory macrophage (M1) was noticed in AD‐induced aorta and anti‐inflammatory macrophage (M2) was observed in diosgenin‐treated aorta. This is the first report where, unifying the mechanism of diosgenin as aan nti‐atherosclerotic and the expression of M1 and M2 specific chemokines is shown by downregulating NFκB and not by preventing the differentiation of monocyte into a macrophage, but by allowing macrophage to differentiate into M2, which aids in preventing the atherosclerotic progression.  相似文献   

4.
Vascular cells are particularly susceptible to oxidative stress that is believed to play a key role in the pathogenesis of cardiovascular disorders. Thioredoxin‐1 (Trx‐1) is an oxidative stress‐limiting protein with anti‐inflammatory and anti‐apoptotic properties. In contrast, its truncated form (Trx‐80) exerts pro‐inflammatory effects. Here we analyzed whether Trx‐80 might exert atherogenic effects by promoting macrophage differentiation into the M1 pro‐inflammatory phenotype. Trx‐80 at 1 µg/ml significantly attenuated the polarization of anti‐inflammatory M2 macrophages induced by exposure to either IL‐4 at 15 ng/ml or IL‐4/IL‐13 (10 ng/ml each) in vitro, as evidenced by the expression of the characteristic markers, CD206 and IL‐10. By contrast, in LPS‐challenged macrophages, Trx‐80 significantly potentiated the differentiation into inflammatory M1 macrophages as indicated by the expression of the M1 cytokines, TNF‐α and MCP‐1. When Trx‐80 was administered to hyperlipoproteinemic ApoE2.Ki mice at 30 µg/g body weight (b.w.) challenged either with LPS at 30 µg/30 g (b.w.) or IL‐4 at 500 ng/30 g (b.w.), it significantly induced the M1 phenotype but inhibited differentiation of M2 macrophages in thymus and liver. When ApoE2.Ki mice were challenged once weekly with LPS for 5 weeks, they showed severe atherosclerotic lesions enriched with macrophages expressing predominantly M1 over M2 markers. Such effect was potentiated when mice received daily, in addition to LPS, the Trx‐80. Moreover, the Trx‐80 treatment led to a significantly increased aortic lesion area. The ability of Trx‐80 to promote differentiation of macrophages into the classical proinflammatory phenotype may explain its atherogenic effects in cardiovascular diseases. J. Cell. Physiol. 228: 1577–1583, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Following myocardial infarction, tissue repair is mediated by the recruitment of monocytes and their subsequent differentiation into macrophages. Recent findings have revealed the dynamic changes in the presence of polarized macrophages with pro‐inflammatory (M1) and anti‐inflammatory (M2) properties during the early (acute) and late (chronic) stages of cardiac ischemia. Mesenchymal stem cells (MSCs) delivered into the injured myocardium as reparative cells are subjected to the effects of polarized macrophages and the inflammatory milieu. The present study investigated how cytokines and polarized macrophages associated with pro‐inflammatory (M1) and anti‐inflammatory (M2) responses affect the survival of MSCs. Human MSCs were studied using an in vitro platform with individual and combined M1 and M2 cytokines: IL‐1β, IL‐6, TNF‐α, and IFN‐γ (for M1), and IL‐10, TGF‐β1, TGF‐β3, and VEGF (for M2). In addition, polarization molecules (M1: LPS and IFN‐γ; M2: IL‐4 and IL‐13) and common chemokines (SDF‐1 and MCP‐1) found during inflammation were also studied. Indirect and direct co‐cultures were conducted using M1 and M2 polarized human THP‐1 monocytes. M2 macrophages and their associated cytokines supported the growth of hMSCs, while M1 macrophages and their associated cytokines inhibited the growth of hMSCs in vitro under certain conditions. These data imply that an anti‐inflammatory (M2) environment is more accommodating to the therapeutic hMSCs than a pro‐inflammatory (M1) environment at specific concentrations. J. Cell. Biochem. 114: 220–229, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Skeletal muscle aging is a major cause of disability and frailty in the elderly. The progressive impairment of skeletal muscle function with aging was recently linked to a disequilibrium between damage and repair. Macrophages participate in muscle tissue repair, first as pro‐inflammatory M1 subtype and then as anti‐inflammatory M2 subtype. However, information on the presence of macrophages in skeletal muscle is still sporadic and the effect of aging on macrophage phenotype remains unknown. In this study, we sought to characterize the polarization status of macrophages in skeletal muscle of persons across a wide range of ages. We found that most macrophages in human skeletal muscle are M2, and that this number increased with advancing age. On the contrary, M1 macrophages declined with aging, making the total number of macrophages invariant with older age. Notably, M2 macrophages colocalized with increasing intermuscular adipose tissue (IMAT) in aging skeletal muscle. Similarly, aged BALB/c mice showed increased IMAT and M2 macrophages in skeletal muscle, accompanied by slightly increased collagen protein production. Collectively, we report that polarization of macrophages to the major M2 subtype is associated with IMAT and propose that increased M2 in aged skeletal muscle may impact upon muscle metabolism associated with aging.  相似文献   

7.
In response to different stimuli, macrophages can differentiate into either a pro‐inflammatory subtype (M1, classically activated macrophages) or acquire an anti‐inflammatory phenotype (M2, alternatively activated macrophages). Candida albicans is the most important opportunistic fungus in nosocomial infections, and it is contended by neutrophils and macrophages during the first steps of the invasive infection. Murine macrophages responses to C. albicans have been widely studied, whereas the responses of human‐polarized macrophages remain less characterized. In this study, we have characterized the proteomic differences between human M1‐ and M2‐polarized macrophages, both in basal conditions and in response to C. albicans, by quantitative proteomics (2DE). This proteomic approach allowed us to identify metabolic routes and cytoskeletal rearrangement components that are the most relevant differences between M1 and M2 macrophages. The analysis has revealed fructose‐1,6‐bisphosphatase 1, a critical enzyme in gluconeogenesis, up‐regulated in M1, as a novel protein marker for macrophage polarization. Regarding the response to C. albicans, an M1‐to‐M2 switch in polarization was observed. This M1‐to‐M2 switch might contribute to Candida pathogenicity by decreasing the generation of specific immune responses, thus enhancing fungal survival and colonization, or instead, may be part of the host attempt to reduce the inflammation and limit the damage of the infection.  相似文献   

8.
Alternatively activated macrophages (M2) have regenerative properties and shown promise as cell therapy in chronic kidney disease. However, M2 plasticity is one of the major hurdles to overcome. Our previous studies showed that genetically modified macrophages stabilized by neutrophil gelatinase‐associated lipocalin (NGAL) were able to preserve their M2 phenotype. Nowadays, little is known about M2 macrophage effects in diabetic kidney disease (DKD). The aim of the study was to investigate the therapeutic effect of both bone marrow‐derived M2 (BM‐фM2) and ф‐NGAL macrophages in the db/db mice. Seventeen‐week‐old mice with established DKD were divided into five treatment groups with their controls: D+BM‐фM2; D+ф‐BM; D+ф‐NGAL; D+ф‐RAW; D+SHAM and non‐diabetic (ND) (db/‐ and C57bl/6J) animals. We infused 1 × 106 macrophages twice, at baseline and 2 weeks thereafter. BM‐фM2 did not show any therapeutic effect whereas ф‐NGAL significantly reduced albuminuria and renal fibrosis. The ф‐NGAL therapy increased the anti‐inflammatory IL‐10 and reduced some pro‐inflammatory cytokines, reduced the proportion of M1 glomerular macrophages and podocyte loss and was associated with a significant decrease of renal TGF‐β1. Overall, our study provides evidence that ф‐NGAL macrophage cell therapy has a therapeutic effect on DKD probably by modulation of the renal inflammatory response caused by the diabetic milieu.  相似文献   

9.
Outbreaks of infections with viruses like Sars‐CoV‐2, Ebola virus and Zika virus lead to major global health and economic problems because of limited treatment options. Therefore, new antiviral drug candidates are urgently needed. The promising new antiviral drug candidate silvestrol effectively inhibited replication of Corona‐, Ebola‐, Zika‐, Picorna‐, Hepatis E and Chikungunya viruses. Besides a direct impact on pathogens, modulation of the host immune system provides an additional facet to antiviral drug development because suitable immune modulation can boost innate defence mechanisms against the pathogens. In the present study, silvestrol down‐regulated several pro‐ and anti‐inflammatory cytokines (IL‐6, IL‐8, IL‐10, CCL2, CCL18) and increased TNF‐α during differentiation and activation of M1‐macrophages, suggesting that the effects of silvestrol might cancel each other out. However, silvestrol amplified the anti‐inflammatory potential of M2‐macrophages by increasing expression of anti‐inflammatory surface markers CD206, TREM2 and reducing release of pro‐inflammatory IL‐8 and CCL2. The differentiation of dendritic cells in the presence of silvestrol is characterized by down‐regulation of several surface markers and cytokines indicating that differentiation is impaired by silvestrol. In conclusion, silvestrol influences the inflammatory status of immune cells depending on the cell type and activation status.  相似文献   

10.
Tumour‐associated macrophage (TAM) is an important component in tumour microenvironment. Generally, TAM exhibits the function of M2‐like macrophage, which was closely related to angiogenesis and tumour progression. Dioscin, a natural steroidal saponin, has shown its powerful anti‐tumour activity recently. However, the mechanism of dioscin involved in immune regulation is still obscure. Here, we observed dioscin induced macrophage M2‐to‐M1 phenotype transition in vitro and inhibited IL‐10 secretion. Meanwhile, the phagocytosis of macrophages was enhanced. In subcutaneous lung tumour models, dioscin inhibited the augmentation of M2 macrophage populations. Furthermore, dioscin down‐regulated STAT3 and JNK signalling pathways in macrophages in vitro. In BMDMs, activating JNK and inhibiting STAT3 induce macrophages to M1 polarization while inhibiting JNK and activating STAT3 to M2 polarization. Additionally, condition mediums from dioscin‐pre‐treated macrophages inhibited the migration of 3LL cells and the tube‐formation capacity of HUVECs. What's more, dioscin‐mediated macrophage polarization inhibited the in vivo metastasis of 3LL cells. In conclusion, dioscin may act as a new anti‐tumour agent by inhibiting TAMs via JNK and STAT3 pathways in lung cancer.  相似文献   

11.
In rheumatoid arthritis (RA), macrophage is one of the major sources of inflammatory mediators. Macrophages produce inflammatory cytokines through toll‐like receptor (TLR)‐mediated signalling during RA. Herein, we studied macrophages from the synovial fluid of RA patients and observed a significant increase in activation of inositol‐requiring enzyme 1α (IRE1α), a primary unfolded protein response (UPR) transducer. Myeloid‐specific deletion of the IRE1α gene protected mice from inflammatory arthritis, and treatment with the IRE1α‐specific inhibitor 4U8C attenuated joint inflammation in mice. IRE1α was required for optimal production of pro‐inflammatory cytokines as evidenced by impaired TLR‐induced cytokine production in IRE1α‐null macrophages and neutrophils. Further analyses demonstrated that tumour necrosis factor (TNF) receptor‐associated factor 6 (TRAF6) plays a key role in TLR‐mediated IRE1α activation by catalysing IRE1α ubiquitination and blocking the recruitment of protein phosphatase 2A (PP2A), a phosphatase that inhibits IRE1α phosphorylation. In summary, we discovered a novel regulatory axis through TRAF6‐mediated IRE1α ubiquitination in regulating TLR‐induced IRE1α activation in pro‐inflammatory cytokine production, and demonstrated that IRE1α is a potential therapeutic target for inflammatory arthritis.  相似文献   

12.
Fractalkine (CX3CL1, FKN), a CX3C gene sequence inflammatory chemokine, has been found to have pro-inflammatory and pro-adhesion effects. Macrophages are immune cells with a critical role in regulating the inflammatory response. The imbalance of M1/M2 macrophage polarization can lead to aggravated inflammation. This study attempts to investigate the mechanisms through which FKN regulates macrophage activation and the acute kidney injury (AKI) involved in inflammatory response induced by lipopolysaccharide (LPS) by using FKN knockout (FKN-KO) mice and cultured macrophages. It was found that FKN and Wnt/β-catenin signalling have a positive interaction in macrophages. FKN overexpression inhibited LPS-induced macrophage apoptosis. However, it enhanced their cell viability and transformed them into the M2 type. The effects of FKN overexpression were accelerated by activation of Wnt/β-catenin signalling. In the in vivo experiments, FKN deficiency suppressed macrophage activation and reduced AKI induced by LPS. Inhibition of Wnt/β-catenin signalling and FKN deficiency further mitigated the pathologic process of AKI. In summary, we provide a novel mechanism underlying activation of macrophages in LPS-induced AKI. Although LPS-induced murine AKI was unable to completely recapitulate human AKI, the positive interactions between FKN and Wnt/β-catenin signalling pathway may be a therapeutic target in the treatment of kidney injury.  相似文献   

13.
14.
Myocardial ischaemia is associated with an exacerbated inflammatory response, as well as with a deregulation of intercellular communication systems. Macrophages have been implicated in the maintenance of heart homeostasis and in the progression and resolution of the ischaemic injury. Nevertheless, the mechanisms underlying the crosstalk between cardiomyocytes and macrophages remain largely underexplored. Extracellular vesicles (EVs) have emerged as key players of cell‐cell communication in cardiac health and disease. Hence, the main objective of this study was to characterize the impact of cardiomyocyte‐derived EVs upon macrophage activation. Results obtained demonstrate that EVs released by H9c2 cells induced a pro‐inflammatory profile in macrophages, via p38MAPK activation and increased expression of iNOS, IL‐1β and IL‐6, being these effects less pronounced with ischaemic EVs. EVs derived from neonatal cardiomyocytes, maintained either in control or ischaemia, induced a similar pattern of p38MAPK activation, expression of iNOS, IL‐1β, IL‐6, IL‐10 and TNFα. Importantly, adhesion of macrophages to fibronectin was enhanced by EVs released by cardiomyocytes under ischaemia, whereas phagocytic capacity and adhesion to cardiomyocytes were higher in macrophages incubated with control EVs. Additionally, serum‐circulating EVs isolated from human controls or acute myocardial infarction patients induce macrophage activation. According to our model, in basal conditions, cardiomyocyte‐derived EVs maintain a macrophage profile that ensure heart homeostasis, whereas during ischaemia, this crosstalk is affected, likely impacting healing and post‐infarction remodelling.  相似文献   

15.
16.
Plastic polarization of macrophage is involved in tumorigenesis. M1‐polarized macrophage mediates rapid inflammation, entity clearance and may also cause inflammation‐induced mutagenesis. M2‐polarized macrophage inhibits rapid inflammation but can promote tumour aggravation. ω‐3 long‐chain polyunsaturated fatty acid (PUFA)‐derived metabolites show a strong anti‐inflammatory effect because they can skew macrophage polarization from M1 to M2. However, their role in tumour promotive M2 macrophage is still unknown. Resolvin D1 and D2 (RvD1 and RvD2) are docosahexaenoic acid (DHA)‐derived docosanoids converted by 15‐lipoxygenase then 5‐lipoxygenase successively. We found that although dietary DHA can inhibit prostate cancer in vivo, neither DHA (10 μmol/L) nor RvD (100 nmol/L) can directly inhibit the proliferation of prostate cancer cells in vitro. Unexpectedly, in a cancer cell‐macrophage co‐culture system, both DHA and RvD significantly inhibited cancer cell proliferation. RvD1 and RvD2 inhibited tumour‐associated macrophage (TAM or M2d) polarization. Meanwhile, RvD1 and RvD2 also exhibited anti‐inflammatory effects by inhibiting LPS‐interferon (IFN)‐γ‐induced M1 polarization as well as promoting interleukin‐4 (IL‐4)‐mediated M2a polarization. These differential polarization processes were mediated, at least in part, by protein kinase A. These results suggest that regulation of macrophage polarization using RvDs may be a potential therapeutic approach in the management of prostate cancer.  相似文献   

17.
Paclitaxel‐induced peripheral neuropathy (PIPN) is often associated with neuropathic pain and neuroinflammation in the central and peripheral nervous system. Antihypertensive drug losartan, an angiotensin II receptor type 1 (AT1R) blocker, was shown to have anti‐inflammatory and neuroprotective effects in disease models, predominantly via activation of peroxisome proliferator‐activated receptor gamma (PPARγ). Here, the effect of systemic losartan treatment (100 mg/kg/d) on mechanical allodynia and neuroinflammation was evaluated in rat PIPN model. The expression of pro‐inflammatory markers protein and mRNA levels in dorsal root ganglia (DRGs) and spinal cord dorsal horn (SCDH) were measured with Western blot, ELISA and qPCR 10 and 21 days after PIPN induction. Losartan treatment attenuated mechanical allodynia significantly. Paclitaxel induced overexpression of C‐C motif chemokine ligand 2 (CCL2), tumour necrosis alpha (TNFα) and interleukin‐6 (IL‐6) in DRGs, where the presence of macrophages was demonstrated. Neuroinflammatory changes in DRGs were accompanied with glial activation and pro‐nociceptive modulators production in SCDH. Losartan significantly attenuated paclitaxel‐induced neuroinflammatory changes and induced expression of pro‐resolving markers (Arginase 1 and IL‐10) indicating a possible shift in macrophage polarization. Considering the safety profile of losartan, acting also as partial PPARγ agonist, it may be considered as a novel treatment strategy for PIPN patients.  相似文献   

18.
Atherosclerosis (AS) is characterized as progressive arterial plaque, which is easy to rupture under low stability. Macrophage polarization and inflammation response plays an important role in regulating plaque stability. Ginsenoside Rb1 (Rb1), one of the main active principles of Panax Ginseng, has been found powerful potential in alleviating inflammatory response. However, whether Rb1 could exert protective effects on AS plaque stability remains unclear. This study investigated the role of Rb1 on macrophage polarization and atherosclerotic plaque stability using primary peritoneal macrophages isolated from C57BL/6 mice and AS model in ApoE?/? mice. In vitro, Rb1 treatment promoted the expression of arginase‐I (Arg‐I) and macrophage mannose receptor (CD206), two classic M2 macrophages markers, while the expression of iNOS (M1 macrophages) was decreased. Rb1 increased interleukin‐4 (IL‐4) and interleukin‐13 (IL‐13) secretion in supernatant and promoted STAT6 phosphorylation. IL‐4 and/or IL‐13 neutralizing antibodies and leflunomide, a STAT6 inhibitor attenuated the up‐regulation of M2 markers induced by Rb1. In vivo, the administration of Rb1 promoted atherosclerotic lesion stability, accompanied by increased M2 macrophage phenotype and reduced MMP‐9 staining. These data suggested that Rb1 enhanced atherosclerotic plaque stability through promoting anti‐inflammatory M2 macrophage polarization, which is achieved partly by increasing the production of IL‐4 and/or IL‐13 and STAT6 phosphorylation. Our study provides new evidence for possibility of Rb1 in prevention and treatment of atherosclerosis.  相似文献   

19.
Recent studies have confirmed that cardiomyocyte‐derived exosomes have many pivotal biological functions, like influencing the progress of coronary artery disease via modulating macrophage phenotypes. However, the mechanisms underlying the crosstalk between cardiomyocytes and macrophages have not been fully characterized. Hence, this study aimed to observe the interaction between cardiomyocytes under hypoxia and macrophages through exosome communication and further evaluate the ability of exosomes derived from cardiomyocytes cultured under hypoxic conditions (Hypo‐Exo) to polarize macrophages, and the effect of alternatively activated macrophages (M2) on hypoxic cardiomyocytes. Our results revealed that hypoxia facilitated the production of transforming growth factor‐beta (TGF‐β) in H9c2 cell‐derived exosomes. Moreover, exosomes derived from cardiomyocytes cultured under normal conditions (Nor‐Exo) and Hypo‐Exo could induce RAW264.7 cells into classically activated macrophages (M1) and M2 macrophages respectively. Likewise, macrophage activation was induced by circulating exosomes isolated from normal human controls (hNor‐Exo) or patients with acute myocardial infarction (hAMI‐Exo). Thus, our findings support that the profiles of hAMI‐Exo have been changed, which could regulate the polarization of macrophages and subsequently the polarized M2 macrophages reduced the apoptosis of cardiomyocytes in return. Based on our findings, we speculate that exosomes have emerged as important inflammatory response modulators regulating cardiac oxidative stress injury.  相似文献   

20.
MiR‐16 is a tumour suppressor that is down‐regulated in certain human cancers. However, little is known on its activity in other cell types. In this study, we examined the biological significance and underlying mechanisms of miR‐16 on macrophage polarization and subsequent T‐cell activation. Mouse peritoneal macrophages were isolated and induced to undergo either M1 polarization with 100 ng/ml of interferon‐γ and 20 ng/ml of lipopolysaccharide, or M2 polarization with 20 ng/ml of interleukin (IL)‐4. The identity of polarized macrophages was determined by profiling cell‐surface markers by flow cytometry and cytokine production by ELISA. Macrophages were infected with lentivirus‐expressing miR‐16 to assess the effects of miR‐16. Effects on macrophage–T cell interactions were analysed by co‐culturing purified CD4+ T cells with miR‐16‐expressing peritoneal macrophages, and measuring activation marker CD69 by flow cytometry and cytokine secretion by ELISA. Bioinformatics analysis was applied to search for potential miR‐16 targets and understand its underlying mechanisms. MiR‐16‐induced M1 differentiation of mouse peritoneal macrophages from either the basal M0‐ or M2‐polarized state is indicated by the significant up‐regulation of M1 marker CD16/32, repression of M2 marker CD206 and Dectin‐1, and increased secretion of M1 cytokine IL‐12 and nitric oxide. Consistently, miR‐16‐expressing macrophages stimulate the activation of purified CD4+ T cells. Mechanistically, miR‐16 significantly down‐regulates the expression of PD‐L1, a critical immune suppressor that controls macrophage–T cell interaction and T‐cell activation. MiR‐16 plays an important role in shifting macrophage polarization from M2 to M1 status, and functionally activating CD4+ T cells. This effect is potentially mediated through the down‐regulation of immune suppressor PD‐L1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号