首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ozone can be found in essentially all locations in the troposphere. Too much exposure of vegetation and humans to this potent oxidizing gas can prove toxic. Reports of human toxicity to ozone first appeared in the 1800's from accidental occupational exposures when ozone was first discovered. Ozone was recognized as damaging field vegetation with a report of altered leaf morphology in grapes in the 1950s. Ozone is the major oxidant component in photochemical smog, and is produced by reactions of volatile organic compounds and oxides of nitrogen with sunlight present. Soon after the inception of the U.S. Environmental Protection Agency (US EPA), the Agency set a general “oxidants” standard (which included ozone) in 1971. A primary standard was created to protect human health and a secondary standard to protect against agricultural losses, ecological damage, and other losses. Ozone concentrations have decreased steadily over the last two decades in some areas of the U.S., but have increased in other areas. Several aspects of ozone exposure need further characterization, including better determination of rural concentrations and the relationship of outdoor to indoor concentrations. Ozone is one of the six criteria air pollutants requiring a formal reexamination of the new findings of effects on health and vegetation on a periodic basis, a process that leads to the publication of an US EPA criteria document. As a result of further study concerning ozone effects, significant changes were made to pollution standards in 1979 and 1997. This toxicant has remained a major air pollutant of concern in the U.S. despite regulation and intense study over several decades.  相似文献   

2.
Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies Karst.) seedlings were exposed to realistically elevated O3 levels in open‐air experiments over three growing seasons. The total O3 exposure doses were 1.2 × (1991), 1.5 × (1992) and 1.7 × (1993) ambient levels. During the 1992 and 1993 growing seasons pine and spruce seedlings received two different levels of nitrogen supply. Effects on growth, mycorrhiza formation, needle ultrastructure, primary and secondary compounds were studied. Ozone exposure had only slight effects on biomass production, growth height and nutrient content of studied conifers. Higher nitrogen availability improved growth of the seedlings and resulted in higher concentration of nitrogen in needles. In Scots pine O3 exposure did not have effects on quantity of total mycorrhizas and short roots, while higher nitrogen availability decreased quantity of mycorrhizas and short roots. In both tree species O3 exposure induced O3‐related ultrastructural symptoms, e.g. granulation and dark staining of the chloroplast stroma in the needle mesophyll cells, at both nitrogen availability levels. Ozone exposure and nitrogen availability did not have significant effects on starch concentrations in either tree species. Concentrations of some individual terpenes were higher in O3‐exposed needles, while concentrations of individual and total resin acids, total phenolics and catechins were not affected by O3 exposure. Nitrogen availability did not have substantial effects on concentrations of monoterpenes. By contrast, concentrations of some individual and total resin acids were lower in pine needles and higher in spruce needles with higher nitrogen availability, while phenolic concentration in spruce needles decreased at higher nitrogen availability. The results suggest that realistically elevated levels of O3 in the field can have some negative effects on the mesophyll ultrastructure of conifer needles, but carbon allocation to root and shoot growth and secondary metabolites are not affected substantially.  相似文献   

3.
Ozone: a tool for probing programmed cell death in plants   总被引:27,自引:0,他引:27  
  相似文献   

4.
BACKGROUND AND AIMS: Ozone effects on peatland vegetation are poorly understood. Since stress responses are often first visible in cell ultrastructure, electron microscopy was used to assess the sensitivity of common peatland plants to elevated ozone concentrations. METHODS: Three moss species (Sphagnum angustifolium, S. magellanicum and S. papillosum), a graminoid (Eriophorum vaginatum) and two dwarf shrubs (Vaccinium oxycoccus and Andromeda polifolia), all growing within an intact canopy on peat monoliths, were exposed to a concentration of 0, 50, 100 or 150 ppb ozone in two separate growth chamber experiments simulating either summer or autumn conditions in central Finland. After a 4- or 5-week-long exposure, samples were photographed in a transmission electron microscope and analysed quantitatively using image processing software. KEY RESULTS: In the chlorophyllose cells of the Sphagnum moss leaves from the capitulum, ozone exposure led to a decrease in chloroplast area and in granum stack thickness and various changes in plastoglobuli and cell wall thickness, depending on the species and the experiment. In E. vaginatum, ozone exposure significantly reduced chloroplast cross-sectional areas and the amount of starch, whereas there were no clear changes in the plastoglobuli. In the dwarf shrubs, ozone induced thickening of the cell wall and an increase in the size of plastoglobuli under summer conditions. In contrast, under autumn conditions the cell wall thickness remained unchanged but ozone exposure led to a transient increase in the chloroplast and starch areas, and in the number and size of plastoglobuli. CONCLUSIONS: Ozone responses in the Sphagnum mosses were comparable to typical ozone stress symptoms of higher plants, and indicated sensitivity especially in S. angustifolium. The responses in the dwarf shrubs suggest stimulation of photosynthesis by low ozone concentrations and ozone sensitivity only under cool autumn conditions.  相似文献   

5.
《植物生态学报》1958,44(5):526
浓度不断升高的地表臭氧(O3)已成为全球性环境问题, 中国也不例外。目前, 高浓度O3对叶片光合气体交换、植物生长或生物量的影响已备受关注, 但有关O3对生态系统层次的研究还相对稀缺且存在较大的不确定性。该文梳理了近40年来地表O3浓度及其影响相关领域的发展趋势和研究热点, 回顾了地表O3浓度升高对植物影响的研究手段和评估方法, 综述了地表O3浓度升高对陆地生态系统影响方面取得的重要进展, 主要包括植物应对O3胁迫的响应机制、地表O3对粮食产量和作物品质、生态系统固碳能力、群落结构和地下过程的影响及地表O3污染区域风险; 此外, 针对目前研究的不足, 对未来研究进行了展望。建议利用先进的完全开放式O3熏蒸系统模拟O3浓度升高对生态系统影响的同时加强对地下生态过程的研究, 开展O3与其他环境因子的复合作用研究; 关注O3污染对粮食安全的影响; 开展联网研究, 建立统一评价体系; 探索减缓地表O3污染的生态防控措施; 以期为地表O3污染生态效应领域的发展提供助力。  相似文献   

6.
浓度不断升高的地表臭氧(O3)已成为全球性环境问题, 中国也不例外。目前, 高浓度O3对叶片光合气体交换、植物生长或生物量的影响已备受关注, 但有关O3对生态系统层次的研究还相对稀缺且存在较大的不确定性。该文梳理了近40年来地表O3浓度及其影响相关领域的发展趋势和研究热点, 回顾了地表O3浓度升高对植物影响的研究手段和评估方法, 综述了地表O3浓度升高对陆地生态系统影响方面取得的重要进展, 主要包括植物应对O3胁迫的响应机制、地表O3对粮食产量和作物品质、生态系统固碳能力、群落结构和地下过程的影响及地表O3污染区域风险; 此外, 针对目前研究的不足, 对未来研究进行了展望。建议利用先进的完全开放式O3熏蒸系统模拟O3浓度升高对生态系统影响的同时加强对地下生态过程的研究, 开展O3与其他环境因子的复合作用研究; 关注O3污染对粮食安全的影响; 开展联网研究, 建立统一评价体系; 探索减缓地表O3污染的生态防控措施; 以期为地表O3污染生态效应领域的发展提供助力。  相似文献   

7.
A faster rate of nuclear DNA evolution has recently been found for plants occupying warmer low latitudes relative to those in cooler high latitudes. That earlier study by our research group compared substitution rates within the variable internal transcribed spacer (ITS) region of the ribosomal gene complex amongst 45 congeneric species pairs, each member of which differed in their latitudinal distributions. To determine whether this rate differential might also occur within highly conserved DNA, we sequenced the 18S ribosomal gene in the same 45 pairs of plants. We found that the rate of evolution in 18S was 51% faster in the tropical plant species relative to their temperate sisters and that the substitution rate in 18S correlated positively with that in the more variable ITS. This result, with a gene coding for ribosomal structure, suggests that climatic influences on evolution extend to functionally important regions of the genome.  相似文献   

8.
DNA methylation in plant genomes occurs in different sequences and genomic contexts that have very different properties. DNA methylation that occurs in CG (mCG) sequence context shows transgenerational stability and high epimutation rate, and can thus provide genealogical information at short time scales. However, due to meta-stability and because mCG variants may arise due to other factors than epimutation, such as environmental stress exposure, it is not clear how well mCG captures genealogical information at micro-evolutionary time scales. Here, we analysed DNA methylation variation between accessions from a geographically widespread, apomictic common dandelion (Taraxacum officinale) lineage when grown experimentally under different light conditions. Using a reduced-representation bisulphite sequencing approach, we show that the light treatment induced differentially methylated cytosines (DMCs) in all sequence contexts, with a bias towards transposable elements. Accession differences were associated mainly with DMCs in CG context. Hierarchical clustering of samples based on total mCG profiles revealed a perfect clustering of samples by accession identity, irrespective of light conditions. Using microsatellite information as a benchmark of genetic divergence within the clonal lineage, we show that genetic divergence between accessions correlates strongly with overall mCG profiles. However, our results suggest that environmental effects that do occur in CG context may produce a heritable signal that partly dilutes the genealogical signal. Our study shows that methylation information in plants can be used to reconstruct micro-evolutionary genealogy, providing a useful tool in systems that lack genetic variation such as clonal and vegetatively propagated plants.  相似文献   

9.
近年来,由于光化学反应引起的臭氧(O3)前体物增加,使全球植物受近地层O3胁迫的程度越来越严重。在东欧、西欧以及美国,O3污染被认为是造成大片森林植被衰退和枯死的主要原因。本研究通过对亚热带城市南昌城区至郊区森林植被的实地调查,结合2014年4-8月南昌近地层O3浓度实时监测数据,并参考O3伤害评估手册中的鉴别方法和标准,分析了南昌市近地层O3时空分布特征及其对木本植物叶片的伤害情况。结果显示:近郊区的O3浓度显著高于远郊区和城区;6月份的O3平均浓度最高,其累计剂量(AOT40)达35.5 mg·m-3·h,远远超过了植物受O3伤害的临界值(19.6 mg·m-3·h),即已经对植物造成了危害;在南昌市近郊区和远郊区,共有16种植物表现出典型的O3伤害症状,如叶缘干枯,叶片表面出现有色斑点、斑块、条带状变色等,其中东京樱花(Cerasus yedoensis(Mats.)Yüet Li)、紫楠(Phoebe sheareri(Hemsl.)Gamble)、闽楠(P.bournei(Hemsl.)Yang)、山鸡椒(Litsea cubeba(Lour.)Pers.)可作为南昌地区的O3污染指示物种。  相似文献   

10.
植物对有机氮源的利用及其在自然生态系统中的意义   总被引:12,自引:1,他引:12  
崔晓阳 《生态学报》2007,27(8):3500-3512
近来大量实验研究表明,许多植物能够在不经矿化的情况下直接吸收、利用环境介质中的生物有机氮,尤其氨基酸类。而且,有些植物利用氨基酸的效率可以与矿质氮源(NH4 、NO3)相当或更高。自然界植物赖以生存的土壤生境中同时存在多种有机氮和矿质氮养分,这是导致植物(至少部分植物)进化产生利用各种不同氮源能力的环境驱动力。土壤中的游离氨基酸尽管含量不高,但其周转快、通量大,理论上可远大于植物的氮需求。尽管植物在与土壤微生物的有机氮源竞争中处于根本性劣势,但土壤中氨基酸的巨大潜在通量和植物相对于微生物的生命周期仍可使植物在长期竞争中获取数量可观的氮。基于植物根对氨基酸的吸收能力、土壤中游离氨基酸库的大小和通量、植物与土壤微生物对氨基酸氮源的竞争以及有关的原位实验结果,近来许多研究者都认为植物有机氮营养在多种生态系统中是重要或潜在重要的。尤其是在一些极地、高山、亚高山、北方针叶林或泰加林生态系统中,由于低温等因素限制有机氮矿化,土壤氨基酸浓度常超过矿质氮(NH4 、NO3-)浓度,氨基酸可能代表着植物的一个主要氮源。认识到现实生态系统中植物对有机氮源利用的重要性意味着传统的矿质营养观念的更新,这将在很大程度上改变人们对某些重要生态过程的理解,并导致对若干生态学中心问题的再认识。研究以森林生态系统为例,阐述了我国开展该领域研究的科学意义和基本框架。  相似文献   

11.
Three aspects of the nitrate production in natural ecosystems are discussed,i.e. the population biology of nitrifying bacteria, the nitrate-producing activity of these organisms and the uptake of nitrate by higher plants. It is concluded that the three methods used in enumerating the nitrifying bacteria,i.e. the Most Probable Number method, the Fluorescent Antibody technique and the Potential Nitrification Rate, all have serious drawbacks and count different segments of the nitrifying populations.From the number of nitrifying bacteria no reliable estimate of the rate production can be obtained and also estimates that are made using field-incubation and15N–NH 4 + techniques do not yield reliable data. Possibly the best results can be obtained using Schimel's method to estimate the actual nitrification rate using15N–NO 3 , but this method has still not been tested under different sets of soil conditions.From the nitrate reductase activity and the chemical composition of the plant a picture can be obtained of the quantities of nitrate and ammonium that have been taken up. However, it is shown that nitrate and ammonium are taken up in different proportions that they are produced. It is concluded that the various parameters have to be studied simultaneously, preferably in defined systems with plants, in which the participating organisms are known.  相似文献   

12.
A process‐based model integrating the effects of UV‐B radiation through epidermis, cellular DNA, and its consequences to the leaf expansion was developed from key parameters in the published literature. Enhanced UV‐B radiation‐induced DNA damage significantly delayed cell division, resulting in significant reductions in leaf growth and development. Ambient UV‐B radiation‐induced DNA damage significantly reduced the leaf growth of species with high relative epidermal absorbance at longer wavelengths and average/low pyrimidine cyclobutane dimers (CPD) photorepair rates. Leaf expansion was highly dependent on the number of CPD present in the DNA, as a result of UV‐B radiation dose, quantitative and qualitative absorptive properties of epidermal pigments, and repair mechanisms. Formation of pyrimidine‐pyrimidone (6‐4) photoproducts (6‐4PP) has no effect on the leaf expansion. Repair mechanisms could not solely prevent the UV‐B radiation interference with the cell division. Avoidance or effective shielding by increased or modified qualitative epidermal absorptance was required. Sustained increased UV‐B radiation levels are more detrimental than short, high doses of UV‐B radiation. The combination of low temperature and increased UV‐B radiation was more significant in the level of UV‐B radiation‐induced damage than UV‐B radiation alone. Slow‐growing leaves were more affected by increased UV‐B radiation than fast‐growing leaves.  相似文献   

13.
The genetics of metal tolerance in vascular plants   总被引:22,自引:5,他引:22  
  相似文献   

14.
Large genomic studies are becoming increasingly common with advances in sequencing technology, and our ability to understand how genomic variation influences phenotypic variation between individuals has never been greater. The exploration of such relationships first requires the identification of associations between molecular markers and phenotypes. Here, we explore the use of Random Forest (RF), a powerful machine‐learning algorithm, in genomic studies to discern loci underlying both discrete and quantitative traits, particularly when studying wild or nonmodel organisms. RF is becoming increasingly used in ecological and population genetics because, unlike traditional methods, it can efficiently analyse thousands of loci simultaneously and account for nonadditive interactions. However, understanding both the power and limitations of Random Forest is important for its proper implementation and the interpretation of results. We therefore provide a practical introduction to the algorithm and its use for identifying associations between molecular markers and phenotypes, discussing such topics as data limitations, algorithm initiation and optimization, as well as interpretation. We also provide short R tutorials as examples, with the aim of providing a guide to the implementation of the algorithm. Topics discussed here are intended to serve as an entry point for molecular ecologists interested in employing Random Forest to identify trait associations in genomic data sets.  相似文献   

15.
Biological invasions cause ecological and economic impacts across the globe. However, it is unclear whether there are strong patterns in terms of their major effects, how the vulnerability of different ecosystems varies and which ecosystem services are at greatest risk. We present a global meta-analysis of 199 articles reporting 1041 field studies that in total describe the impacts of 135 alien plant taxa on resident species, communities and ecosystems. Across studies, alien plants had a significant effect in 11 of 24 different types of impact assessed. The magnitude and direction of the impact varied both within and between different types of impact. On average, abundance and diversity of the resident species decreased in invaded sites, whereas primary production and several ecosystem processes were enhanced. While alien N-fixing species had greater impacts on N-cycling variables, they did not consistently affect other impact types. The magnitude of the impacts was not significantly different between island and mainland ecosystems. Overall, alien species impacts are heterogeneous and not unidirectional even within particular impact types. Our analysis also reveals that by the time changes in nutrient cycling are detected, major impacts on plant species and communities are likely to have already occurred.  相似文献   

16.
Man's activities pose a number of threats to the functioning, structure and diversity of natural and semi-natural ecosystems. One of the main threats is the increase in concentrations in air pollutants in this century (Wellburn, 1988; Tamm, 1991). This paper is a commentary on the effects of tropospheric ozone (O3) and airborne nitrogen deposition (both oxidized (NOx) and reduced (NHy) compounds) on natural and semi-natural ecosystems, based upon the oral presentations and the discussions during the Symposium, extended with a personal overview and some suggestions about future challenges for research. The most important effects of these air pollutants on natural and semi-natural vegetation are summarized and evaluated in ecological terms, with respect to the functioning and structure of unaffected systems. Air pollutants are transported over both short and long distances (as far as a few thousand km) before being deposited on surface water, vegetation or soil. In this way, vegetation over a large area or in remote regions can be influenced by airborne pollutants (see Fowler et al . (1998); Asman, Sutton & Schjørring (1998)).  相似文献   

17.
增强紫外B辐射对植物及生态系统影响研究的发展趋势   总被引:44,自引:10,他引:34  
介绍了一些有关紫外B辐射增强对植物及生态系统影响研究的新进展:1.许多研究已深入到分子水平;2.注意到对植物生长调控的研究;3.更加重视对植物防御、修复的研究;4.有关信号传导的研究日渐增多;5.对植物群体及生态系统影响的研究在不断扩大与加深;6.复合效应研究正在升温。推断今后在一段时间内,有关UV-B辐射对植物和生态系统影响的研究不但不会削弱,可能还会加强,特别分子水平的研究会大大增加,今后对群体和生态系统的研究会重视野外和长期效应的观测。我国在这一领域的研究起步晚,但近些年发展得较快,有部分研究已赶上国际研究进展的步伐。  相似文献   

18.
Invasive non-native plants are a major driver of native biodiversity loss, yet native biodiversity can sometimes benefit from non-native species. Depending on habitat context, even the same non-native species can have positive and negative effects on biodiversity. Blackberry (Rubus fruticosus aggregate) is a useful model organism to better understand a non-native plant with conflicting impacts on biodiversity. We used a replicated capture-mark-recapture study across 11 consecutive seasons to examine the response of small mammal diversity and abundance to vegetation structure and density associated with non-native blackberry (R. anglocandicans) in native, hybrid and blackberry-dominated novel ecosystems in Australia. Across the three habitat types, increasing blackberry dominance had a positive influence on mammal diversity, while the strength and direction of this influence varied for abundance. At a microhabitat scale within hybrid and native habitat there were no significant differences in diversity, or the abundance of most species, between microhabitats where blackberry was absent versus dominant. In contrast, in novel ecosystems diversity and abundances were very low without blackberry, yet high (comparable to native ecosystems) within blackberry as it provided functionally-analogous vegetation structure and density to the lost native understory. Our results indicate the ecological functions of non-native plant species vary depending on habitat and need to be considered for management. Comparative studies such as ours that apply a standardized approach across a broad range of conditions at the landscape and habitat scale are crucial for guiding land managers on control options for non-native species (remove, reduce or retain and contain) that are context-sensitive and scale-dependent.  相似文献   

19.
《Plant Ecology & Diversity》2013,6(2-3):131-140
Background: Nitrogen fixation has been quantified for a range of crop legumes and actinorhizal plants under different agricultural/agroforestry conditions, but much less is known of legume and actinorhizal plant N2 fixation in natural ecosystems.

Aims: To assess the proportion of total plant N derived from the atmosphere via the process of N2 fixation (%Ndfa) by actinorhizal and legume plants in natural ecosystems and their N input into these ecosystems as indicated by their 15N natural abundance.

Methods: A comprehensive collation of published values of %Ndfa for legumes and actinorhizal plants in natural ecosystems and their N input into these ecosystems as estimated by their 15N natural abundance was carried out by searching the ISI Web of Science database using relevant key words.

Results: The %Ndfa was consistently large for actinorhizal plants but very variable for legumes in natural ecosystems, and the average value for %Ndfa was substantially greater for actinorhizal plants. High soil N, in particular, but also low soil P and water content were correlated with low legume N2 fixation. N input into ecosystems from N2 fixation was very variable for actinorhizal and legume plants and greatly dependent on their biomass within the system.

Conclusions: Measurement of 15N natural abundance has given greater understanding of where legume and actinorhizal plant N2 fixation is important in natural ecosystems. Across studies, the average value for %Ndfa was substantially greater for actinorhizal plants than for legumes, and the relative abilities of the two groups of plants to utilise mineral N requires further study.  相似文献   

20.
The genetic basis of phenotypic traits is of great interest to evolutionary biologists, but their contribution to adaptation in nature is often unknown. To determine the genetic architecture of flowering time in ecologically relevant conditions, we used a recombinant inbred line population created from two locally adapted populations of Arabidopsis thaliana from Sweden and Italy. Using these RILs, we identified flowering time QTL in growth chambers that mimicked the natural temperature and photoperiod variation across the growing season in each native environment. We also compared the genomic locations of flowering time QTL to those of fitness (total fruit number) QTL from a previous three‐year field study. Ten total flowering time QTL were found, and in all cases, the Italy genotype caused early flowering regardless of the conditions. Two QTL were consistent across chamber environments, and these had the largest effects on flowering time. Five of the fitness QTL colocalized with flowering time QTL found in the Italy conditions, and in each case, the local genotype was favoured. In contrast, just two flowering time QTL found in the Sweden conditions colocalized with fitness QTL and in only one case was the local genotype favoured. This implies that flowering time may be more important for adaptation in Italy than Sweden. Two candidate genes (FLC and VIN3) underlying the major flowering time QTL found in the current study are implicated in local adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号