首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Tetrahydroxystilbene glucoside (TSG) is a strong antioxidant and free radical scavenger derived from Polygonum multiflorum Thunb. The present study aims to evaluate the protective effect of TSG against d-galactose induced aging process in mice and its possible mechanisms of action. Our study revealed that administration of TSG improved the memory ability and regulated the body weight of mice. TSG also reduced the levels of ROS, NO and IGF-1 and increased the levels of SOD, Ca2+ and Klotho protein in the serum. Furthermore, TSG up-regulated the expression of Klotho protein in cerebrum, heart, kidney, testis and epididymis tissues of d-galactose induced aging mice. These results suggested that TSG had a promising anti-aging effect by regulating Klotho gene.  相似文献   

4.
《Gender Medicine》2012,9(4):219-231
BackgroundAging kidneys exhibit slowly developing injury and women are usually protected compared with men, in association with maintained renal nitric oxide.ObjectivesOur purpose was to test 2 hypotheses: (1) that aging intact Fischer-344 (F344) female rats exhibit less glomerular damage than similarly aged males, and (2) that loss of female ovarian hormones would lead to greater structural injury and dysregulation of the nitric oxide synthase (NOS) system in aging F344 rat kidneys.MethodsWe compared renal injury in F344 rats in intact, ovariectomized, and ovariectomized with estrogen replaced young (6 month) and old (24 month) female rats with young and old intact male rats and measured renal protein abundance of NOS isoforms and oxidative stress.ResultsThere was no difference in age-dependent glomerular damage between young or old intact male and female F344 rats, and neither ovariectomy nor estrogen replacement affected renal injury; however, tubulointerstitial injury was greater in old males than in old females. These data suggest that ovarian hormones do not influence these aspects of kidney aging in F344 rats and that the greater tubulointerstitial injury is caused by male sex. Old males had greater kidney cortex NOS3 abundance than females, and NOS1 abundance (alpha and beta isoforms) was increased in old males compared with both young males and old females. NOS abundance was preserved with age in intact females, ovariectomy did not reduce NOS1 or NOS3 protein abundance, and estrogen replacement did not uniformly elevate NOS proteins, suggesting that estrogens are not primary regulators of renal NOS abundance in this strain. Nicotinamide adenine dinucleotide phosphate oxidase-dependent superoxide production and nitrotyrosine immunoreactivity were increased in aging male rat kidneys compared with females, which could compromise renal nitric oxide production and/or bioavailability.ConclusionsThe kidney damage expressed in aging F344 rats is fairly mild and is not related to loss of renal cortex NOS3 or NOS1 alpha.  相似文献   

5.
Endothelial oxidative stress develops with aging and reactive oxygen species impair endothelium‐dependent relaxation (EDR) by decreasing nitric oxide (NO) availability. Endothelial KCa3.1, which contributes to EDR, is upregulated by H2O2. We investigated whether KCa3.1 upregulation compensates for diminished EDR to NO during aging‐related oxidative stress. Previous studies identified that the levels of ceramide synthase 5 (CerS5), sphingosine, and sphingosine 1‐phosphate were increased in aged wild‐type and CerS2 mice. In primary mouse aortic endothelial cells (MAECs) from aged wild‐type and CerS2 null mice, superoxide dismutase (SOD) was upregulated, and catalase and glutathione peroxidase 1 (GPX1) were downregulated, when compared to MAECs from young and age‐matched wild‐type mice. Increased H2O2 levels induced Fyn and extracellular signal‐regulated kinases (ERKs) phosphorylation and KCa3.1 upregulation. Catalase/GPX1 double knockout (catalase?/?/GPX1?/?) upregulated KCa3.1 in MAECs. NO production was decreased in aged wild‐type, CerS2 null, and catalase?/?/GPX1?/? MAECs. However, KCa3.1 activation‐induced, NG‐nitro‐l ‐arginine‐, and indomethacin‐resistant EDR was increased without a change in acetylcholine‐induced EDR in aortic rings from aged wild‐type, CerS2 null, and catalase?/?/GPX1?/? mice. CerS5 transfection or exogenous application of sphingosine or sphingosine 1‐phosphate induced similar changes in levels of the antioxidant enzymes and upregulated KCa3.1. Our findings suggest that, during aging‐related oxidative stress, SOD upregulation and downregulation of catalase and GPX1, which occur upon altering the sphingolipid composition or acyl chain length, generate H2O2 and thereby upregulate KCa3.1 expression and function via a H2O2/Fyn‐mediated pathway. Altogether, enhanced KCa3.1 activity may compensate for decreased NO signaling during vascular aging.  相似文献   

6.
Hydrogen sulfide (H2S) is the third gas signaling molecule that has been shown to be involved in the regulating vital activities in the body, including inhibition of aging. However, it is unknown whether H2S alleviates aging in the kidney and glomerular mesangial cells (GMCs) by modulating their mitophagy. Here, results of experiments in vivo and in vitro showed that compared with control group, the renal function of mice and GMCs viability were decreased in D-gal (D-galactose) group, while the activity of SA-β-gal and p21 expression were increased, Cyclin D1 and Klotho expressions were decreased; H2S content and CSE expression were lower; ROS and MDA contents and mitochondrial permeability transition pore (mPTP) opening were risedose; ATP production and mitochondrial membrane potential (Δψm) were reduced; Apoptotic rate, the expression of Cleaved caspase-9 and -3, Cyt c, p62 and Drp1 were enhanced and the expression of Bcl-2, Mfn2, Beclin-1, LC3 II/I, PINK1 and parkin were decreased. In addition, phospho-AMPK/AMPK and phospho-ULK1/ULK1 were also decreased significantly. Compared with the D-gal group, the changes of above indexes were reversed in the D-gal + NaHS (Sodium hydrosulfide, an exogenous H2S donor) group. The reverse effects of NaHS were similar to that of AICAR (an AMPK agonist) and kinetin (a PINK1 agonist), respectively. Taken together, these results suggest that exogenous H2S increases mitophagy and inhibits apoptosis as well as oxidative stress through up-regulation of AMPK-ULK1-PINK1-parkin pathway, which delays kidney senescence in mice.  相似文献   

7.

Background

Klotho is a renal protein with anti-aging properties that is downregulated in conditions related to kidney injury. Hyperlipidemia accelerates the progression of renal damage, but the mechanisms of the deleterious effects of hyperlipidemia remain unclear.

Methods

We evaluated whether hyperlipidemia modulates Klotho expression in kidneys from C57BL/6 and hyperlipidemic apolipoprotein E knockout (ApoE KO) mice fed with a normal chow diet (ND) or a Western-type high cholesterol-fat diet (HC) for 5 to 10 weeks, respectively.

Results

In ApoE KO mice, the HC diet increased serum and renal cholesterol levels, kidney injury severity, kidney macrophage infiltration and inflammatory chemokine expression. A significant reduction in Klotho mRNA and protein expression was observed in kidneys from hypercholesteromic ApoE KO mice fed a HC diet as compared with controls, both at 5 and 10 weeks. In order to study the mechanism involved in Klotho down-regulation, murine tubular epithelial cells were treated with ox-LDL. Oxidized-LDL were effectively uptaken by tubular cells and decreased both Klotho mRNA and protein expression in a time- and dose-dependent manner in these cells. Finally, NF-κB and ERK inhibitors prevented ox-LDL-induced Klotho downregulation.

Conclusion

Our results suggest that hyperlipidemia-associated kidney injury decreases renal expression of Klotho. Therefore, Klotho could be a key element explaining the relationship between hyperlipidemia and aging with renal disease.  相似文献   

8.
Aging is associated with myocardial dysfunction although the underlying mechanism is unclear. AMPK, a key cellular fuel sensor for energy metabolism, is compromised with aging. This study examined the role of AMPK deficiency in aging‐associated myocardial dysfunction. Young or old wild‐type (WT) and transgenic mice with overexpression of a mutant AMPK α2 subunit (kinase dead, KD) were used. AMPK α isoform activity, myocardial function and morphology were examined. DCF and JC‐1 fluorescence probes were employed to quantify reactive oxygen species (ROS) and mitochondrial membrane potential (ΔΨm), respectively. KD mice displayed significantly reduced α2 but not α1 AMPK isoform activity at both ages with a greater effect at old age. Aging itself decreased α1 isoform activity. Cardiomyocyte contractile function, intracellular Ca2+ handling, and SERCA2a levels were compromised with aging, the effects of which were exacerbated by AMPK deficiency. H&E staining revealed cardiomyocyte hypertrophy with aging, which was more pronounced in KD mice. TEM micrographs displayed severe disruption of mitochondrial ultrastructure characterized by swollen, irregular shape and disrupted cristae in aged KD compared with WT mice. Aging enhanced ROS production and reduced ΔΨm, the effects of which were accentuated by AMPK deficiency. Immunoblotting data depicted unchanged Akt phosphorylation and a significant decrease in mitochondrial biogenesis cofactor PGC‐1α in aged groups. AMPK deficiency but not aging decreased the phosphorylation of ACC and eNOS. Expression of membrane Glut4 and HSP90 was decreased in aged KD mice. Moreover, treatment of the AMPK activator metformin attenuated aging‐induced cardiomyocyte contractile defects. Collectively, our data suggest a role for AMPK deficiency in aging‐induced cardiac dysfunction possibly through disrupted mitochondrial function and ROS production.  相似文献   

9.
10.
A large number of reactive oxygen species (ROS) aggravate cerebral damage after ischaemia/reperfusion (I/R). Glutathione (GSH), thioredoxin (Trx) and nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2) represent three major antioxidant systems and play vital roles in affecting each other in eliminating ROS. Identification of drugs targeting triple antioxidant systems simultaneously is vital for inhibiting oxidative damage after cerebral I/R. This study investigated the protective effect of safflower extract and aceglutamide (SAAG) against cerebral I/R injury through modulating multiple antioxidant systems of GSH, Trx and Nrf2 and identified each role of its component acegluatminde (AG) and safflower extract (SA) on these systems. Safflower extract and aceglutamide and its two components decreased neurological deficit scores, infarction rate, apoptosis and oxidative damage after cerebral I/R while enhanced cell viability, decreased reactive oxygen species and nitric oxide level in H2O2‐induced PC12 cell model. Importantly, compared to its two components, SAAG demonstrated more effective enhancement of GSH, Nrf2 and Trx systems and a better protection against cerebral I/R injury. The enhanced antioxidant systems prevented ASK1 activation and suppressed subsequent p38 and JNK cascade‐mediated apoptosis. Moreover, inhibition of Trx and Nrf2 systems by auranofin and ML385 abolished SAAG‐mediated protection, respectively. Thus, enhanced triple systems by SAAG played a better protective role than those by SA or AG via inhibition of ASK1 cascades. This research provided evidence for the necessity of combination drugs from the perspective of multiple antioxidant systems. Furthermore, it also offers references for the study of combination drugs and inspires novel treatments for ischaemic stroke.  相似文献   

11.
Reactive oxygen species (ROS) are highly reactive oxygen‐containing molecules associated with aging and a broad spectrum of pathologies. We have previously shown that transgenic expression of the antioxidant enzyme catalase targeted to the mitochondria (mCAT) in mice reduces ROS, attenuates age‐related disease, and increases lifespan. However, it has been increasingly recognized that ROS also has beneficial roles in signaling, hormesis, stress response, and immunity. We therefore hypothesized that mCAT might be beneficial only when ROS approaches pathological levels in older age and might not be advantageous at a younger age when basal ROS is low. We analyzed abundance and turnover of the global proteome in hearts and livers of young (4 month) and old (20 month) mCAT and wild‐type (WT) mice. In old hearts and livers of WT mice, protein half‐lives were reduced compared to young, while in mCAT mice the reverse was observed; the longest half‐lives were seen in old mCAT mice and the shortest in young mCAT. Protein abundance of old mCAT hearts recapitulated a more youthful proteomic expression profile (P‐value < 0.01). However, young mCAT mice partially phenocopied the older wild‐type proteome (P‐value < 0.01). Age strongly interacts with mCAT, consistent with antagonistic pleiotropy in the reverse of the typical direction. These findings underscore the contrasting roles of ROS in young vs. old mice and indicate the need for better understanding of the interaction between dose and age in assessing the efficacy of therapeutic interventions in aging, including mitochondrial antioxidants.  相似文献   

12.
Metformin, an FDA‐approved antidiabetic drug, has been shown to elongate lifespan in animal models. Nevertheless, the effects of metformin on human cells remain unclear. Here, we show that low‐dose metformin treatment extends the lifespan of human diploid fibroblasts and mesenchymal stem cells. We report that a low dose of metformin upregulates the endoplasmic reticulum‐localized glutathione peroxidase 7 (GPx7). GP×7 expression levels are decreased in senescent human cells, and GPx7 depletion results in premature cellular senescence. We also indicate that metformin increases the nuclear accumulation of nuclear factor erythroid 2‐related factor 2 (Nrf2), which binds to the antioxidant response elements in the GPX7 gene promoter to induce its expression. Moreover, the metformin‐Nrf2‐GPx7 pathway delays aging in worms. Our study provides mechanistic insights into the beneficial effects of metformin on human cellular aging and highlights the importance of the Nrf2‐GPx7 pathway in pro‐longevity signaling.  相似文献   

13.
14.
15.
16.
Visible impairments in skin appearance, as well as a subtle decline in its functionality at the molecular level, are hallmarks of skin aging. Activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-pathway, which is important in controlling inflammation and oxidative stress that occur during aging, can be triggered by sulforaphane (SFN), an isothiocyanate found in plants from the Brassicaceae family. This study aimed to assess the effects of SFN intake on age-related skin alterations. Male C57BL6 young (2 months) and old (21 months) mice were treated for 3 months with SFN diet (442.5 mg per kg) or control diet. The antioxidant capacities of the skin were increased in old SFN-treated animals as measured by mRNA levels of Nrf2 (P<.001) and its target genes NQO1 (P<.001) and HO1 (P<.01). Protein expression for Nrf2 was also increased in old SFN fed animals (P<.01), but not the protein expression of NQO1 or HO1. Additionally, ROS and MMP9 protein levels were significantly decreased (P<.05) in old SFN fed animals. Histopathological analysis confirmed that there was no difference in epidermal thickness in old, when compared to young, SFN treated animals, while the dermal layer thickness was lower in old vs. young, treated animals (P<.05). Moreover, collagen deposition was improved with SFN treatment in young (P<.05) and structurally significantly improved in the old mice (P<.001). SFN dietary supplementation therefore ameliorates skin aging through activation of the Nrf2-pathway.  相似文献   

17.
18.
19.
Pro‐aging effects of endogenous advanced glycation end‐products (AGEs) have been reported, and there is increasing interest in the pro‐inflammatory and ‐fibrotic effects of their binding to RAGE (the main AGE receptor). The role of dietary AGEs in aging remains ill‐defined, but the predominantly renal accumulation of dietary carboxymethyllysine (CML) suggests the kidneys may be particularly affected. We studied the impact of RAGE invalidation and a CML‐enriched diet on renal aging. Two‐month‐old male, wild‐type (WT) and RAGE?/? C57Bl/6 mice were fed a control or a CML‐enriched diet (200 μg CML/gfood) for 18 months. Compared to controls, we observed higher CML levels in the kidneys of both CML WT and CML RAGE?/? mice, with a predominantly tubular localization. The CML‐rich diet had no significant impact on the studied renal parameters, whereby only a trend to worsening glomerular sclerosis was detected. Irrespective of diet, RAGE?/? mice were significantly protected against nephrosclerosis lesions (hyalinosis, tubular atrophy, fibrosis and glomerular sclerosis) and renal senile apolipoprotein A‐II (ApoA‐II) amyloidosis (p < 0.001). A positive linear correlation between sclerosis score and ApoA‐II amyloidosis score (r = 0.92) was observed. Compared with old WT mice, old RAGE?/? mice exhibited lower expression of inflammation markers and activation of AKT, and greater expression of Sod2 and SIRT1. Overall, nephrosclerosis lesions and senile amyloidosis were significantly reduced in RAGE?/? mice, indicating a protective effect of RAGE deletion with respect to renal aging. This could be due to reduced inflammation and oxidative stress in RAGE?/? mice, suggesting RAGE is an important receptor in so‐called inflamm‐aging.  相似文献   

20.
The cellular mechanisms that contribute to the acceleration of atherosclerosis in aging populations are poorly understood, although it is hypothesized that changes in the proliferative capacity of vascular smooth muscle cells is contributory. We addressed the relationship among aging, generation of reactive oxygen species (ROS), and proliferation in primary culture smooth muscle cells (SMC) derived from the aortas of young (4 mo old) and aged (16 mo old) mice to understand the phenotypic modulation of these cells as aging occurs. SMC from aged mice had decreased proliferative capacity in response to alpha-thrombin stimulation, yet generated higher levels of ROS and had constitutively increased mitogen-activated protein kinase activity, in comparison with cells from younger mice. These effects may be explained by dysregulation of cell cycle-associated proteins such as cyclin D1 and p27Kip1 in SMC from aged mice. Increased ROS generation was associated with decreased endogenous antioxidant activity, increased lipid peroxidation, and mitochondrial DNA damage. Accrual of oxidant-induced damage and decreased proliferative capacity in SMC may explain, in part, the age-associated transition to plaque instability in humans with atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号