共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Levamisole suppresses adipogenesis of aplastic anaemia‐derived bone marrow mesenchymal stem cells through ZFP36L1‐PPARGC1B axis 下载免费PDF全文
Lu‐Lu Liu Lei Liu Hai‐Hui Liu Sai‐Sai Ren Cui‐Yun Dou Pan‐Pan Cheng Cui‐Ling Wang Li‐Na Wang Xiao‐Li Chen Hao Zhang Ming‐Tai Chen 《Journal of cellular and molecular medicine》2018,22(9):4496-4506
3.
Francesco Peri Daniel Grell Pascal Dumy Yoshihiro Yokokawa Karl Welzenbach Gabriele Weitz‐Schmidt Manfred Mutter 《Journal of peptide science》1999,5(7):313-322
The design and synthesis of cyclic mimetics of VCAM‐1 protein that reproduce the integrin‐binding domain are presented. The unprotected peptide precursor 37 – 43 , Thr‐Gln‐Ile‐Asp‐Ser‐Pro‐Leu, was grafted onto functional templates of type naphthalene, biphenyl and benzyl through the chemoselective formation of C‐ and N‐terminal oximes resulting in a mixture of four isomeric forms due to syn–anti isomerism of the oxime bonds. Some isomers could be monitored by HPLC and identified by NMR. The molecule containing a naphthalene‐derived template was found to inhibit the VCAM‐1/VLA‐4 interaction more efficiently than previously reported for sulfur‐bridged cyclic peptides containing similar sequences. The finding confirms the importance of incorporating conformational constraints between the terminal ends of the peptide loop 37 – 43 in the design of synthetic inhibitors of the VCAM‐1/integrin interaction. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
4.
5.
6.
Cytokine‐induced interleukin‐1 receptor antagonist protein expression in genetically engineered equine mesenchymal stem cells for osteoarthritis treatment 下载免费PDF全文
Simone Gabner Reinhard Ertl Karsten Velde Matthias Renner Florien Jenner Monika Egerbacher Juraj Hlavaty 《The journal of gene medicine》2018,20(5)
Background
A combination of tissue engineering methods employing mesenchymal stem cells (MSCs) together with gene transfer takes advantage of innovative strategies and highlights a new approach for targeting osteoarthritis (OA) and other cartilage defects. Furthermore, the development of systems allowing tunable transgene expression as regulated by natural disease‐induced substances is highly desirable.Methods
Bone marrow‐derived equine MSCs were transduced with a lentiviral vector expressing interleukin‐1 receptor antagonist (IL‐1Ra) gene under the control of an inducible nuclear factor‐kappa B‐responsive promoter and IL‐1Ra production upon pro‐inflammatory cytokine stimulation [tumor necrosis factor (TNF)α, interleukin (IL)‐1β] was analysed. To assess the biological activity of the IL‐1Ra protein that was produced and the therapeutic effect of IL‐1Ra‐expressing MSCs (MSC/IL‐1Ra), cytokine‐based two‐ and three‐dimensional in vitro models of osteoarthritis using equine chondrocytes were established and quantitative real‐time polymerase chain reaction (PCR) analysis was used to measure the gene expression of aggrecan, collagen IIA1, interleukin‐1β, interleukin‐6, interleukin‐8, matrix metalloproteinase‐1 and matrix metalloproteinase‐13.Results
A dose‐dependent increase in IL‐1Ra expression was found in MSC/IL‐1Ra cells upon TNFα administration, whereas stimulation using IL‐1β did not lead to IL‐1Ra production above the basal level observed in nonstimulated cells as a result of the existing feedback loop. Repeated cycles of induction allowed on/off modulation of transgene expression. In vitro analyses revealed that IL‐1Ra protein present in the conditioned medium from MSC/IL‐1Ra cells blocks OA onset in cytokine‐treated equine chondrocytes and co‐cultivation of MSC/IL‐1Ra cells with osteoarthritic spheroids alleviates the severity of the osteoarthritic changes.Conclusions
Thus, pro‐inflammatory cytokine induced IL‐1Ra protein expression from genetically modified MSCs might represent a promising strategy for osteoarthritis treatment. 相似文献7.
Mesenchymal stem cells (MSCs) have been suggested for pancreatic islet repair in Type 1 diabetes mellitus (T1DM). This study aimed to investigate the effect of human umbilical cord MSCs (hUC-MSCs) transfected with tissue inhibitors of matrix metalloproteinase (TIMP)-1 on the regeneration of β-cell islets in vitro and in vivo. hUC-MSCs were isolated, cultured, and transfected with lentiviruses for the overexpression of hTIMP-1. An in vitro coculture system of hUC-MSCs and streptozotocin-induced islets was established to examine the morphology, apoptosis, and insulin secretion of the cocultured islets. Diabetic mouse models were injected with lenti-TIMP-1-enhanced green fluorescent protein (EGFP)-hUC-MSCs to test the effect of hTIMP-1 on insulin levels and glucose tolerance in vivo. The expression of insulin and glucagon was evaluated by immunofluorescence staining. The results showed that coculture with hUC-MSCs or Lenti-TIMP-1-EGFP-hUC-MSCs improved islet viability rates. Lenti-TIMP-1-EGFP-hUC-MSC coculture increased the insulin and C-peptide secretion function of the cultured islets and increased the secretion of tumor necrosis factor-β1, interleukin-6, IL-10, and hTIMP-1. hUC-MSCs, especially those transfected with Lenti-hTIMP-1-EGFP, showed a strong protective effect in diabetic mice by alleviating weight loss and improving glucose and insulin metabolism. In addition, transplantation rescued islet histology and function in vivo. The overexpression of TIMP-1 by hUC-MSCs seems to exert beneficial effects on pancreatic islet cells. In conclusion, this study may provide a new perspective on the development of hUC-MSC-based cell transplantation therapy for T1DM. 相似文献
8.
9.
Effect of heme oxygenase‐1 transduced bone marrow mesenchymal stem cells on damaged intestinal epithelial cells in vitro 下载免费PDF全文
Yi Cao Ben‐Juan Wu Wei‐Ping Zheng Ming‐Li Yin Tao Liu Hong‐Li Song 《Cell biology international》2017,41(7):726-738
In this study, we explored the effects of mesenchymal stem cells (MSCs) from bone marrow overexpressing heme oxygenase‐1 (HO‐1) on the damaged human intestinal epithelial barrier in vitro. Rat MSCs were isolated from bone marrow and transduced with rat HO‐1 recombinant adenovirus (HO‐MSCs) for stable expression of HO‐1. Colorectal adenocarinoma 2 (Caco2) cells were treated with tumor necrosis factor‐α (TNF‐α) to establish a damaged colon epithelial model. Damaged Caco2 were cocultured with MSCs, Ad‐MSCs, Ad‐HO + MSCs or HO‐MSCs. mRNA and protein expression of Zona occludens‐1 (ZO‐1) and human HO‐1 and the release of cytokines were measured. ZO‐1 and human HO‐1 in Caco2 were significantly decreased after treatment with TNF‐α; and this effect was reduced when coculture with MSCs from bone marrow. Expression of ZO‐1 was not significantly affected by Caco2 treatment with TNF‐α, Ad‐HO, and MSCs. In contrast, ZO‐1 and human HO‐1 increased significantly when the damaged Caco2 was treated with HO‐MSCs. HO‐MSCs showed the strongest effect on the expression of ZO‐1 in colon epithelial cells. Coculture with HO‐MSCs showed the most significant effects on reducing the expression of IL‐2, IL‐6, IFN‐γ and increasing the expression of IL‐10. HO‐MSCs protected the intestinal epithelial barrier, in which endogenous HO‐1 was involved. HO‐MSCs play an important role in the repair process by reducing the release of inflammatory cytokines and increasing the release of anti‐inflammatory factors. These results suggested that HO‐MSCs from bone marrow were more effective in repairing the damaged intestinal epithelial barrier, and the effectiveness of MSCs was improved by HO‐1 gene transduction, which provides favorable support for the application of stem cell therapy in the intestinal diseases. 相似文献
10.
Estimating the ability of bone marrow‐derived mesenchymal stem cells (BM‐MSCs) to alleviate pulmonary injury induced via isoproterenol (ISP). ISP was injected in a dose of (100 mg/kg, subcutaneously twice at an interval of 24 h). One month post BM‐MSCs transplantation by intravenous injection, pulmonary oxidative stress was assessed, and Western blot analyses and histopathological investigations were conducted. Compared with the normal control group, BM‐MSCs transplantation significantly decreased the expression of pulmonary anti‐oxidative stress marker. Western blot analysis revealed that ISP significantly reduced the protein expression of the anti‐oxidative stress marker nuclear related factor‐2 (Nrf2). However, the apoptotic marker (caspase‐3) and collagen content marker (8‐hydroxyproline) were markedly elevated. These biochemical markers were confirmed by histopathological investigations. Finally, it was demonstrated that BM‐MSCs transplantation showed a superior effect in improving pulmonary function through alleviating oxidative stress, apoptosis, and collagen content. 相似文献
11.
Jiwen Cheng Huama Ye Zhiyong Liu Chuanliang Xu Zhensheng Zhang Yan Liu Yinghao Sun 《Journal of cellular biochemistry》2013,114(7):1510-1518
Mesenchymal stem cells (MSCs) favor cancer growth by facilitating immunosuppression status in tumor microenvironment. However, the function and mechanism of MSCs in initiating and developing prostate cancer remains to be fully understood. In this study, we first found that MSCs promoted prostate cancer (PCa) tumor growth in vivo and cell proliferation in vitro by using PCs cell strain RM‐1. Both exogenous and endogenous MSCs could be recruited into the tumor microenvironment by using bone‐marrow transplantation model. We further demonstrated that PDGF‐BB produced by RM‐1 cell promoted MSCs proliferation in vivo and in vitro, which was abrogated by Si‐RNA specific to PDGF‐BB. And inflammatory cytokines, such as interferon gamma, tumor necrosis factor alpha, and anti‐inflammatory cytokine transformation growth factor alpha, further increased the ability of RM‐1 to produce PDGF‐BB. Overall, PCa cells produced PDGF‐BB favors the proliferation of MSCs, which may elicit immunosuppressive function and enable PCa cells to escape from the immunity surveillance in tumor inflammatory microenvironment. J. Cell. Biochem. 114: 1510–1518, 2013. © 2013 Wiley Periodicals, Inc. 相似文献
12.
13.
Quan‐Wen Liu Jing‐Yuan Li Xiang‐Cheng Zhang Yu Liu Qian‐Yu Liu Ling Xiao Wen‐Jie Zhang Han‐You Wu Ke‐Yu Deng Hong‐Bo Xin 《Journal of cellular and molecular medicine》2020,24(18):10525-10541
Hepatocellular carcinoma (HCC) is the third leading cause of the cancer‐related death in the world. Human amniotic mesenchymal stem cells (hAMSCs) have been characterized with a pluripotency, low immunogenicity and no tumorigenicity. Especially, the immunosuppressive and anti‐inflammatory effects of hAMSCs make them suitable for treating HCC. Here, we reported that hAMSCs administrated by intravenous injection significantly inhibited HCC through suppressing cell proliferation and inducing cell apoptosis in tumour‐bearing mice with Hepg2 cells. Cell tracking experiments with GFP‐labelled hAMSCs showed that the stem cells possessed the ability of migrating to the tumorigenic sites for suppressing tumour growth. Importantly, both hAMSCs and the conditional media (hAMSC‐CM) have the similar antitumour effects in vitro, suggesting that hAMSCs‐derived cytokines might be involved in their antitumour effects. Antibody array assay showed that hAMSCs highly expressed dickkopf‐3 (DKK‐3), dickkopf‐1 (DKK‐1) and insulin‐like growth factor‐binding protein 3 (IGFBP‐3). Furthermore, the antitumour effects of hAMSCs were further confirmed by applications of the antibodies or the specific siRNAs of DKK‐3, DKK‐1 and IGFBP‐3 in vitro. Mechanically, hAMSCs‐derived DKK‐3, DKK‐1 and IGFBP‐3 markedly inhibited cell proliferation and promoted apoptosis of Hepg2 cells through suppressing the Wnt/β‐catenin signalling pathway and IGF‐1R‐mediated PI3K/AKT signalling pathway, respectively. Taken together, our study demonstrated that hAMSCs possess significant antitumour effects in vivo and in vitro and might provide a novel strategy for HCC treatment clinically. 相似文献
14.
Panchanan Maiti Sarah Peruzzaro Nivya Kolli Melissa Andrews Abeer Al‐Gharaibeh Julien Rossignol Gary L. Dunbar 《Journal of cellular and molecular medicine》2019,23(8):5211-5224
Autophagy, including mitophagy, is critical for neuroprotection in traumatic brain injury (TBI). Transplantation of mesenchymal stem cells (MSCs) provides neuroprotection and induces autophagy by increasing anti‐inflammatory cytokines, such as interleukin‐10 (IL‐10). To evaluate these effects of IL10 that are released by MSCs, we genetically engineered MSCs to overexpress IL10 and compared their effects to unaltered MSCs following transplantation near the site of induced TBIs in rats. Adult, male Sprague‐Dawley rats were divided into four groups: Sham + vehicle, TBI + vehicle, TBI + MSCs‐IL‐10 and TBI + MSCs‐GFP. Thirty‐six hours post‐TBI, the first two groups received vehicle (Hanks balance salt solution), whereas last two groups were transplanted with MSCs‐IL‐10 or MSCs‐GFP. Three weeks after transplantation, biomarkers for neurodegenerative changes, autophagy, mitophagy, cell death and survival markers were measured. We observed a significant increase in the number of dead cells in the cortex and hippocampus in TBI rats, whereas transplantation of MSCs‐IL‐10 significantly reduced their numbers in comparison to MSCs alone. MSCs‐IL‐10 rats had increased autophagy, mitophagy and cell survival markers, along with decreased markers for cell death and neuroinflammation. These results suggest that transplantation of MSCs‐IL‐10 may be an effective strategy to protect against TBI‐induced neuronal damage. 相似文献
15.
Natasha Baker Guofeng Zhang Yang You Rocky S. Tuan 《Journal of cellular biochemistry》2012,113(12):3773-3787
Caveolin‐1 is a scaffolding protein of cholesterol‐rich caveolae lipid rafts in the plasma membrane. In addition to regulating cholesterol transport, caveolin‐1 has the ability to bind a diverse array of cell signaling molecules and regulate cell signal transduction in caveolae. Currently, there is little known about the role of caveolin‐1 in stem cells. It has been reported that the caveolin‐1 null mouse has an expanded population of cells expressing stem cell markers in the gut, mammary gland, and brain, suggestive of a role for caveolin‐1 in stem cell regulation. The caveolin‐1 null mouse also has increased bone mass and an increased bone formation rate, and its bone marrow‐derived mesenchymal stem cells (MSCs) have enhanced osteogenic potential. However, the role of caveolin‐1 in human MSC osteogenic differentiation remains unexplored. In this study, we have characterized the expression of caveolin‐1 in human bone marrow derived MSCs. We show that caveolin‐1 protein is enriched in density gradient‐fractionated MSC plasma membrane, consisting of ~100 nm diameter membrane‐bound vesicles, and is distributed in a punctate pattern by immunofluoresence localization. Expression of caveolin‐1 increases in MSCs induced to undergo osteogenic differentiation, and siRNA‐mediated knockdown of caveolin‐1 expression enhances MSC proliferation and osteogenic differentiation. Taken together, these findings suggest that caveolin‐1 normally acts to regulate the differentiation and renewal of MSCs, and increased caveolin‐1 expression during MSC osteogenesis likely acts as a negative feedback to stabilize the cell phenotype. J. Cell. Biochem. 113: 3773–3787, 2012. © 2012 Wiley Periodicals, Inc. 相似文献
16.
Marzieh Lotfi Hojjat Naderi‐Meshkin Elahe Mahdipour Asghar Mafinezhad Roohollah Bagherzadeh Hamid Reza Sadeghnia Habibollah Esmaily Masoud Maleki Halimeh Hasssanzadeh Majid Ghayaour‐Mobarhan Hamid Reza Bidkhori Ahmad Reza Bahrami 《Cell biology international》2019,43(12):1365-1378
Using cell‐based engineered skin is an emerging strategy for treating difficult‐to‐heal wounds. To date, much endeavor has been devoted to the fabrication of appropriate scaffolds with suitable biomechanical properties to support cell viability and growth in the microenvironment of a wound. The aim of this research was to assess the impact of adipose tissue‐derived mesenchymal stem cells (AD‐MSCs) and keratinocytes on gelatin/chitosan/β‐glycerol phosphate (GCGP) nanoscaffold in full‐thickness excisional skin wound healing of rats. For this purpose, AD‐MSCs and keratinocytes were isolated from rats and GCGP nanoscaffolds were electrospun. Through an in vivo study, the percentage of wound closure was assessed on days 7, 14, and 21 after wound induction. Samples were taken from the wound sites in order to evaluate the density of collagen fibers and vessels at 7 and 14 days. Moreover, sampling was done on days 7 and 14 from wound sites to assess the density of collagen fibers and vessels. The wound closure rate was significantly increased in the keratinocytes‐AD‐MSCs‐scaffold (KMS) group compared with other groups. The expressions of vascular endothelial growth factor, collagen type 1, and CD34 were also significantly higher in the KMS group compared with the other groups. These results suggest that the combination of AD‐MSCs and keratinocytes seeded onto GCGP nanoscaffold provides a promising treatment for wound healing. 相似文献
17.
Yanping Xu Jiaqi Zhu Bing Feng Feiyan Lin Jiahang Zhou Jingqi Liu Xiaowei Shi Xuan Lu Qiaoling Pan Jiong Yu Ying Zhang Lanjuan Li Hongcui Cao 《Cell proliferation》2021,54(5)
ObjectivesAcute lung injury (ALI) not only affects pulmonary function but also leads to intestinal dysfunction, which in turn contributes to ALI. Mesenchymal stem cell (MSC) transplantation can be a potential strategy in the treatment of ALI. However, the mechanisms of synergistic regulatory effects by MSCs on the lung and intestine in ALI need more in‐depth study.Materials and methodsWe evaluated the therapeutic effects of MSCs on the murine model of lipopolysaccharide (LPS)‐induced ALI through survival rate, histopathology and bronchoalveolar lavage fluid. Metagenomic sequencing was performed to assess the gut microbiota. The levels of pulmonary and intestinal inflammation and immune response were assessed by analysing cytokine expression and flow cytometry.ResultsMesenchymal stem cells significantly improved the survival rate of mice with ALI, alleviated histopathological lung damage, improved intestinal barrier integrity, and reduced the levels of inflammatory cytokines in the lung and gut. Furthermore, MSCs inhibited the inflammatory response by decreasing the infiltration of CD8+ T cells in both small‐intestinal lymphocytes and Peyer''s patches. The gut bacterial community diversity was significantly altered by MSC transplantation. Furthermore, depletion of intestinal bacterial communities with antibiotics resulted in more severe lung and gut damages and mortality, while MSCs significantly alleviated lung injury due to their immunosuppressive effect.ConclusionsThe present research indicates that MSCs attenuate lung and gut injury partly via regulation of the immune response in the lungs and intestines and gut microbiota, providing new insights into the mechanisms underlying the therapeutic effects of MSC treatment for LPS‐induced ALI. 相似文献
18.
Wei Xu Ruijun Xu Zhikun Li Yi Wang Ruixi Hu 《Journal of cellular and molecular medicine》2019,23(3):1899-1907
Mesenchymal stem cells (MSCs) have drawn great attention because of their therapeutic potential. It has been suggested that intra‐venous infused MSCs could migrate the site of injury to help repair the damaged tissue. However, the mechanism for MSC migration is still not clear so far. In this study, we reported that hypoxia increased chemotaxis migration of MSCs. At 4 and 6 hours after culturing in hypoxic (1% oxygen) conditions, the number of migrated MSCs was significantly increased. Meanwhile, hypoxia also increased the expression of HIF‐1α and SDF‐1. Using small interference RNA, we knocked down the expression of HIF‐1α in MSCs to study the role of HIF‐1α in hypoxia induced migration. Our data indicated that knocking down the expression of HIF‐1α not only abolished the migration of MSCs, but also reduced the expression of SDF‐1. Combining the results of migration assay and expression at RNA and protein level, we demonstrated a novel mechanism that controls the increase of MSCs migration. This mechanism involved HIF‐1α mediated SDF‐1 expression. These findings provide new insight into the role of HIF‐1α in the hypoxia induced MSC migration and can be a benefit for the development of MSC‐based therapeutics for wound healing. 相似文献
19.
Hongxing Li Wei Zhao Li Wang Qianqian Luo Na Yin Xueyan Lu Yun Hou Jingjing Cui Hongqin Zhang 《Cell biology international》2019,43(8):899-909
Previous studies have shown that the ovarian failure in autoimmune‐induced premature ovarian failure (POF) mice could be improved by the transplantation of human placenta‐derived mesenchymal stem cells (hPMSCs); however, the protective mechanism of hPMSCs transplantation on ovarian dysfunction remains unclear. Ovarian dysfunction is closely related to the apoptosis of granulosa cells (GCs). To determine the effects of hPMSCs transplantation on GCs apoptosis, an autoimmune POF mice model was established with zona pellucida glycoprotein 3 (ZP3) peptide. It is reported that the inositol‐requiring enzyme 1α (IRE1α) and its downstream molecules play a central role in the endoplasmic reticulum (ER) stress‐induced apoptosis pathway. So the aim of this study is to investigate whether hPMSCs transplantation attenuated GCs apoptosis via inhibiting ER stress IRE1α signaling pathway. The ovarian dysfunction, follicular dysplasia, and GCs apoptosis were observed in the POF mice. And the IRE1α pathway was activated in ovaries of POF mice, as demonstrated by, increased X‐box binding protein 1 (XBP1), up‐regulated 78 kDa glucose‐regulated protein (GRP78) and caspase‐12. Following transplantation of hPMSCs, the ovarian structure and function were significantly improved in POF mice. In addition, the GCs apoptosis was obviously attenuated and IRE1α pathway was significantly inhibited. Transplantation of hPMSCs suppressed GCs apoptosis‐induced by ER stress IRE1α signaling pathway in POF mice, which might contribute to the hPMSCs transplantation‐mediating ovarian function recovery. 相似文献