首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Drosophila ovary provides an attractive model for studying the extrinsic or intrinsic factors that regulate the fate of germline stem cells (GSCs). Using this model, we identified a new role for Drosophila spaghetti (spag), encoding a homolog of human RNA polymerase II‐associated protein 3 (RPAP3), in regulating the fate of ovarian GSCs. Results from spag knockdown and genetic mosaic studies suggest that spag functions as an intrinsic factor for GSCs maintenance. Loss of Spag by, either spag RNAi or null mutation failed to trigger apoptosis in ovarian GSCs. Overexpression of spag led to negligible increases in the number of GSC/Cystoblast (CB) cells, suggesting that an excess of Spag is not sufficient to accelerate the proliferation of GSCs or delay CBs’ differentiation. Our study provides evidence supporting that spag is involved in adult stem cells maintenance. In addition, the RNAi screen results showed that knockdown of Hsp90, one of known Spag interacting partners, led to loss of ovarian GSCs in Drosophila. Heterozygous mutations in hsp90 (hsp90/+) dramatically accelerated the GSC loss in spag RNAi ovaries, suggesting that the Spag‐contained complex possibly plays an essential role in controlling the GSCs fate.  相似文献   

2.
3.
Aging influences stem cells, but the processes involved remain unclear. Insulin signaling, which controls cellular nutrient sensing and organismal aging, regulates the G2 phase of Drosophila female germ line stem cell (GSC) division cycle in response to diet; furthermore, this signaling pathway is attenuated with age. The role of insulin signaling in GSCs as organisms age, however, is also unclear. Here, we report that aging results in the accumulation of tumorous GSCs, accompanied by a decline in GSC number and proliferation rate. Intriguingly, GSC loss with age is hastened by either accelerating (through eliminating expression of Myt1, a cell cycle inhibitory regulator) or delaying (through mutation of insulin receptor (dinR) GSC division, implying that disrupted cell cycle progression and insulin signaling contribute to age‐dependent GSC loss. As flies age, DNA damage accumulates in GSCs, and the S phase of the GSC cell cycle is prolonged. In addition, GSC tumors (which escape the normal stem cell regulatory microenvironment, known as the niche) still respond to aging in a similar manner to normal GSCs, suggesting that niche signals are not required for GSCs to sense or respond to aging. Finally, we show that GSCs from mated and unmated females behave similarly, indicating that female GSC–male communication does not affect GSCs with age. Our results indicate the differential effects of aging and diet mediated by insulin signaling on the stem cell division cycle, highlight the complexity of the regulation of stem cell aging, and describe a link between ovarian cancer and aging.  相似文献   

4.
5.
6.
Stem cells function in niches, which consist of somatic cells that control the stem cells' self‐renewal, proliferation, and differentiation. Drosophila ovary germline niche consists of the terminal filament (TF) cells, cap cells, and escort stem cells; signaling from the TF cells and the cap cells is essential for maintenance of germline stem cells (GSCs). Here, we show that in the earwig Opisthocosmia silvestris, the female GSC niche is morphologically simple and consist of the TF cells and several structurally uniform escort cells. The most posterior cell of the TF (the basal cell of the TF) differs from remaining TF cells and is separated from the anterior region of the germarium by the processes of the escort cells, and consequently, does not contact the GSCs directly. We also show that between somatic cells of earwig niche argosome‐like vesicles and cytoneme‐like extensions are present. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
8.
Juvenile hormone(JH),a growth regulator,inhibits ecdysteroid-induced meta-morphosis and controls insect development and diapause.Methoprene-tolerant(Met)and Krippel homolog I(Kr-h1)are two proteins involved in JH action.To gain some insight into their function in development of Sitodiplosis mosellana,an insect pest undergoing obligatory larval diapause at the mature 3rd instar stage,we cloned full-length complemen-tary DNAs of Met and Kr-h1 from this specics.SmMet encoded a putative protein,which contained three domains typical of the bHLH-PAS family and eight conserved amino acid residues important for JH binding.SmKr-h1 encoded a protein showing high sequence homology to its counterparts in other specics,and contained all eight highly conserved Zn-finger motifs for DNA-binding.Expression patterns of SmMet and SmKr hl were de-velopmentally regulated and JH III responsive as well.Their mRNA abundance increased as larvae entered carly 3rd instar,pre-diapause and maintenance stages,and peaked during post-diapause quiescence,a pattern correlated with JH titers in this species.Different from reduced expression of SmMer,SmKr-h1 mRNA increased at mid-to-late period of post-diapause development.Topical application of JH II on diapausing larvac also induced the two genes in a dose-dependent manner.Expression of SmuMer and SmKr-h1 clearly declined in the pre-pupal phase,and was significantly higher in female adults than male adults.These results suggest that JH-responsive SmMet and SmKr-h1 might play key roles in diapause induction and maintenance as well as in post-diapause quiescence and adult reproduction,whereas metamorphosis from larvae to pupac might be correlated with their reduced expression.  相似文献   

9.
10.
Changes in mitochondrial dynamics (fusion and fission) are known to occur during stem cell differentiation; however, the role of this phenomenon in tissue aging remains unclear. Here, we report that mitochondrial dynamics are shifted toward fission during aging of Drosophila ovarian germline stem cells (GSCs), and this shift contributes to aging‐related GSC loss. We found that as GSCs age, mitochondrial fragmentation and expression of the mitochondrial fission regulator, Dynamin‐related protein (Drp1), are both increased, while mitochondrial membrane potential is reduced. Moreover, preventing mitochondrial fusion in GSCs results in highly fragmented depolarized mitochondria, decreased BMP stemness signaling, impaired fatty acid metabolism, and GSC loss. Conversely, forcing mitochondrial elongation promotes GSC attachment to the niche. Importantly, maintenance of aging GSCs can be enhanced by suppressing Drp1 expression to prevent mitochondrial fission or treating with rapamycin, which is known to promote autophagy via TOR inhibition. Overall, our results show that mitochondrial dynamics are altered during physiological aging, affecting stem cell homeostasis via coordinated changes in stemness signaling, niche contact, and cellular metabolism. Such effects may also be highly relevant to other stem cell types and aging‐induced tissue degeneration.  相似文献   

11.
Understanding how stem cells are maintained in their microenvironment (the niche) is vital for their application in regenerative medicine. Studies of Drosophila male germline stem cells (GSCs) have served as a paradigm in niche-stem cell biology. It is known that the BMP and JAK-STAT pathways are necessary for the maintenance of GSCs in the testis (Kawase et al., 2004; Kiger et al., 2001; Schulz et al., 2004; Shivdasani and Ingham, 2003; Tulina and Matunis, 2001). However, our recent work strongly suggests that BMP signaling is the primary pathway leading to GSC self-renewal (Leatherman and DiNardo, 2010). Here we show that magu controls GSC maintenance by modulating the BMP pathway. We found that magu was specifically expressed from hub cells, and accumulated at the testis tip. Testes from magu mutants exhibited a reduced number of GSCs, yet maintained a normal population of somatic stem cells and hub cells. Additionally, BMP pathway activity was reduced, whereas JAK-STAT activation was retained in mutant testes. Finally, GSC loss caused by the magu mutation could be suppressed by overactivating the BMP pathway in the germline.  相似文献   

12.

Background

The initiation and progression of various types of tumors, including glioma, are driven by a population of cells with stem cell properties. Glioma stem cells (GSCs) are located in specialized microenvironments (niches) within tumors. These niches represent the hallmarks of malignant gliomas (vascular proliferations, hypoxia/necrosis) and bear analogy to the microenvironments in which physiological stem cells in the brain are found.

Scope of the review

Here we review the progress that has been made towards uncovering the function of the perivascular and the hypoxic niche and the molecular pathways that control the properties of GSCs within them. We propose models of how the different niches and GSC pools in them interact with each other.

Major conclusions

GSCs are not merely passive residents of their niches, but actively contribute to the shaping of the niches through a complex crosstalk with different components of the microenvironment. For example, GSCs play a dominant role in promoting new blood vessel formation through a variety of mechanisms, including the hypoxia dependent stimulation of angiogenesis, recruitment of endothelial progenitor cells and direct transdifferentiation into endothelial cells. Recent work has also revealed that GSCs can recruit and modulate the function of various immune cells to suppress anti-tumor immune responses and to foster tumor-promoting inflammation, which in turn could support the maintenance of GSCs.

General significance

These findings underscore the central role of the GSC microenvironment in driving glioma progression making the GSC niche a prime therapeutic target for the design of therapies aimed at eradicating GSCs.This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   

13.
All cells rely on highly conserved protein folding and clearance pathways to detect and resolve protein damage and to maintain protein homeostasis (proteostasis). Because age is associated with an imbalance in proteostasis, there is a need to understand how protein folding is regulated in a multicellular organism that undergoes aging. We have observed that the ability of Caenorhabditis elegans to maintain proteostasis declines sharply following the onset of oocyte biomass production, suggesting that a restricted protein folding capacity may be linked to the onset of reproduction. To test this hypothesis, we monitored the effects of different sterile mutations on the maintenance of proteostasis in the soma of C. elegans. We found that germline stem cell (GSC) arrest rescued protein quality control, resulting in maintenance of robust proteostasis in different somatic tissues of adult animals. We further demonstrated that GSC‐dependent modulation of proteostasis requires several different signaling pathways, including hsf‐1 and daf‐16/kri‐1/tcer‐1, daf‐12, daf‐9, daf‐36, nhr‐80, and pha‐4 that differentially modulate somatic quality control functions, such that each signaling pathway affects different aspects of proteostasis and cannot functionally complement the other pathways. We propose that the effect of GSCs on the collapse of proteostasis at the transition to adulthood is due to a switch mechanism that links GSC status with maintenance of somatic proteostasis via regulation of the expression and function of different quality control machineries and cellular stress responses that progressively lead to a decline in the maintenance of proteostasis in adulthood, thereby linking reproduction to the maintenance of the soma.  相似文献   

14.
Larval diapause in many lepidopteran insects is induced and maintained by high juvenile hormone (JH). In the case of the bamboo borer, Omphisa fuscidentalis, the effect of JH is the opposite: The application of juvenile hormone analog (JHA: S‐methoprene) terminates larval diapause, unlike in other insect species. Here, we analyzed the expression of JH‐receptor Met, DH‐PBAN, and Kr‐h1 in the subesophageal ganglion (SG) from October to April using semi‐quantitative polymerase chain reaction (PCR). The results show that OfMet and OfDH‐PBAN messenger RNA in the SG are mainly expressed during the larval diapause stage, while OfKr‐h1 increases during the pupal stage. Using tissue culture techniques and an enzyme‐linked immunosorbent assay (ELISA), diapause hormone (DH) was found to induce ecdysteroidogenesis in the culture medium of the prothoracic gland (PG) after incubation for 30 min with 25 ng and 50 ng of DH. Thus, DH is a novel stimulator for the PG. We identified a DHR homolog in the bamboo borer and confirmed that it is expressed in the PG. In addition, for in vitro experiments, DH increased the expression levels of OfDHR, OfEcR‐A, and ecdysone‐inducible genes in the PG. These results demonstrate that DH can function as a prothoracicotropic factor, and this function of DH might be through of DHR expressed on PG cells. Consequently, DH is one of the key factors in larval diapause break which is triggered by JH in the bamboo borer, O. fuscidentalis.  相似文献   

15.
Stem cell division is tightly controlled via secreted signaling factors and cell adhesion molecules provided from local niche structures. Molecular mechanisms by which each niche component regulates stem cell behaviors remain to be elucidated. Here we show that heparan sulfate (HS), a class of glycosaminoglycan chains, regulates the number and asymmetric division of germline stem cells (GSCs) in the Drosophila testis. We found that GSC number is sensitive to the levels of 6-O sulfate groups on HS. Loss of 6-O sulfation also disrupted normal positioning of centrosomes, a process required for asymmetric division of GSCs. Blocking HS sulfation specifically in the niche, termed the hub, led to increased GSC numbers and mispositioning of centrosomes. The same treatment also perturbed the enrichment of Apc2, a component of the centrosome-anchoring machinery, at the hub–GSC interface. This perturbation of the centrosome-anchoring process ultimately led to an increase in the rate of spindle misorientation and symmetric GSC division. This study shows that specific HS modifications provide a novel regulatory mechanism for stem cell asymmetric division. The results also suggest that HS-mediated niche signaling acts upstream of GSC division orientation control.  相似文献   

16.
Adult stem cells reside in specialized microenvironments, or niches, that are essential for their function in vivo. Stem cells are physically attached to the niche, which provides secreted factors that promote their self-renewal and proliferation. Despite intense research on the role of the niche in regulating stem cell function, much less is known about how the niche itself is controlled. We previously showed that insulin signals directly stimulate germline stem cell (GSC) division and indirectly promote GSC maintenance via the niche in Drosophila. Insulin-like peptides are required for maintenance of cap cells (a major component of the niche) via modulation of Notch signaling, and they also control attachment of GSCs to cap cells and E-cadherin levels at the cap cell–GSC junction. Here, we further dissect the molecular and cellular mechanisms underlying these processes. We show that insulin and Notch ligands directly stimulate cap cells to maintain their numbers and indirectly promote GSC maintenance. We also report that insulin signaling, via phosphoinositide 3-kinase and FOXO, intrinsically controls the competence of cap cells to respond to Notch ligands and thereby be maintained. Contrary to a previous report, we also find that Notch ligands originated in GSCs are not required either for Notch activation in the GSC niche, or for cap cell or GSC maintenance. Instead, the niche itself produces ligands that activate Notch signaling within cap cells, promoting stability of the GSC niche. Finally, insulin signals control cap cell–GSC attachment independently of their role in Notch signaling. These results are potentially relevant to many systems in which Notch signaling modulates stem cells and demonstrate that complex interactions between local and systemic signals are required for proper stem cell niche function.  相似文献   

17.
In many animals, germline progenitors are kept undifferentiated to give rise to germline stem cells (GSCs), enabling continuous production of gametes throughout animal life. In the Drosophila ovary, GSCs arise from a subset of primordial germ cells (PGCs) that stay undifferentiated even after gametogenesis has started. How a certain population of PGCs is protected against differentiation, and the significance of its regulatory mechanisms on GSC establishment remain elusive. Here we show that epidermal growth factor receptor (Egfr) signaling in somatic stromal intermingled cells (ICs), activated by its ligand produced in germ cells, controls the size of the PGC pool at the onset of gametogenesis. Egfr signaling in ICs limits the number of cells that express the heparan sulfate proteoglycan Dally, which is required for the movement and stability of the locally-produced stromal morphogen, Decapentaplegic (Dpp, a BMP2/4 homologue). Dpp is received by PGCs and maintains them in an undifferentiated state. Altering Egfr signaling levels changes the size of the PGC pool and affects the number of GSCs established during development. While excess GSC formation is compensated by the adult stage, insufficient GSC formation can lead to adult ovarioles that completely lack GSCs, suggesting that ensuring an absolute size of the PGC pool is crucial for the GSC system.  相似文献   

18.
The transition from a Drosophila ovarian germline stem cell (GSC) to its differentiated daughter cell, the cystoblast, is controlled by both niche signals and intrinsic factors. piwi and pumilio (pum) are essential for GSC self-renewal, whereas bag-of-marbles (bam) is required for cystoblast differentiation. We demonstrate that Piwi and Bam proteins are expressed independently of each other in reciprocal patterns in GSCs and cystoblasts. However, overexpression of either one antagonizes the other in these cells. Furthermore, piwi;bam double mutants phenocopy the bam mutant. This epistasis reflects the niche signaling function of piwi because depleting piwi from niche cells in bam mutant ovaries also phenocopies bam mutants. Thus, bam is epistatic to niche Piwi, but not germline Piwi function. Despite this, bam- ovaries lacking germline Piwi contain approximately 4-fold fewer germ cells than bam- ovaries, consistent with the role of germline Piwi in promoting GSC mitosis by 4-fold. Finally, pum is epistatic to bam, indicating that niche Piwi does not regulate Bam-C through Pum. We propose that niche Piwi maintains GSCs by repressing bam expression in GSCs, which consequently prevents Bam from downregulating Pum/Nos function in repressing the translation of differentiation genes and germline Piwi function in promoting germ cell division.  相似文献   

19.
Stem cells are maintained in vivo by short-range signaling systems in specialized microenvironments called niches, but the molecular mechanisms controlling the physical space of the stem cell niche are poorly understood. In this study, we report that heparan sulfate (HS) proteoglycans (HSPGs) are essential regulators of the germline stem cell (GSC) niches in the Drosophila melanogaster gonads. GSCs were lost in both male and female gonads of mutants deficient for HS biosynthesis. dally, a Drosophila glypican, is expressed in the female GSC niche cells and is responsible for maintaining the GSC niche. Ectopic expression of dally in the ovary expanded the niche area, showing that dally is required for restriction of the GSC niche space. Interestingly, the other glypican, dally-like, plays a major role in regulating male GSC niche maintenance. We propose that HSPGs define the physical space of the niche by serving as trans coreceptors, mediating short-range signaling by secreted factors.  相似文献   

20.
Stem cells have an innate ability to occupy their stem cell niche, which in turn, is optimized to house stem cells. Organ aging is associated with reduced stem cell occupancy in the niche, but the mechanisms involved are poorly understood. Here, we report that Notch signaling is increased with age in Drosophila female germline stem cells (GSCs), and this results in their removal from the niche. Clonal analysis revealed that GSCs with low levels of Notch signaling exhibit increased adhesiveness to the niche, thereby out-competing their neighbors with higher levels of Notch; adhesiveness is altered through regulation of E-cadherin expression. Experimental enhancement of Notch signaling in GSCs hastens their age-dependent loss from the niche, and such loss is at least partially mediated by Sex lethal. However, disruption of Notch signaling in GSCs does not delay GSC loss during aging, and nor does it affect BMP signaling, which promotes self-renewal of GSCs. Finally, we show that in contrast to GSCs, Notch activation in the niche (which maintains niche integrity, and thus mediates GSC retention) is reduced with age, indicating that Notch signaling regulates GSC niche occupancy both intrinsically and extrinsically. Our findings expose a novel role of Notch signaling in controlling GSC-niche adhesion in response to aging, and are also of relevance to metastatic cancer cells, in which Notch signaling suppresses cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号