首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
  • Relative growth rate (RGR) plays an important role in plant adaptation to the light environment through the growth potential/survival trade‐off. RGR is a complex trait with physiological and biomass allocation components. It has been argued that herbivory may influence the evolution of plant strategies to cope with the light environment, but little is known about the relation between susceptibility to herbivores and growth‐related functional traits.
  • Here, we examined in 11 evergreen tree species from a temperate rainforest the association between growth‐related functional traits and (i) species’ shade‐tolerance, and (ii) herbivory rate in the field. We aimed at elucidating the differential linkage of shade and herbivory with RGR via growth‐related functional traits.
  • We found that RGR was associated negatively with shade‐tolerance and positively with herbivory rate. However, herbivory rate and shade‐tolerance were not significantly related. RGR was determined mainly by photosynthetic rate (Amax) and specific leaf area (SLA). Results suggest that shade tolerance and herbivore resistance do not covary with the same functional traits. Whereas shade‐tolerance was strongly related to Amax and to a lesser extent to leaf mass ratio (LMR) and dark respiration (Rd), herbivory rate was closely related to allocation traits (SLA and LMR) and slightly associated with protein content.
  • The effects of low light on RGR would be mediated by Amax, while the effects of herbivory on RGR would be mediated by SLA. Our findings suggest that shade and herbivores may differentially contribute to shape RGR of tree species through their effects on different resource‐uptake functional traits.
  相似文献   

2.
  • The re‐composition of deforested environments requires the prior acclimation of seedlings to full sun in nurseries. Seedlings can overcome excess light either through the acclimation of pre‐existing fully expanded leaves or through the development of new leaves that are acclimated to the new light environment. Here, we compared the acclimation capacity of mature (MatL, fully expanded at the time of transfer) and newly expanded (NewL, expanded after the light shift) leaves of Guazuma ulmifolia Lam. (Malvaceae) seedlings to high light.
  • The seedlings were initially grown under shade and then transferred to full sunlight. MatL and NewL were used for chlorophyll fluorescence and gas exchange analyses, pigment extraction and morpho‐anatomical measurements.
  • After the transfer of seedlings to full sun, the MatL persisted and acclimated to some extent to the new light condition, since they underwent alterations in some morpho‐physiological traits and maintained a functional electron transport chain and positive net photosynthesis rate. However, long‐term exposure to high light led to chronic photoinhibition in MatL, which could be related to the limited plasticity of leaf morpho‐anatomical attributes. However, the NewL showed a high capacity to use the absorbed energy in photochemistry and dissipate excess energy harmlessly, attributes that were favoured by the high structural plasticity exhibited by these leaves.
  • Both the maintenance of mature, photosynthetically active leaves and the production of new leaves with a high capacity to cope with excess energy were important for acclimation of G. ulmifolia seedlings.
  相似文献   

3.
  • Climate models predict a further drying of the Mediterranean summer. One way for plant species to persist during such climate changes is through acclimation. Here, we determine the extent to which trait plasticity in response to drought differs between species and between sites, and address the question whether there is a trade‐off between drought survival and phenotypic plasticity.
  • Throughout the summer we measured physiological traits (photosynthesis – Amax, stomatal conductance – gs, transpiration – E, leaf water potential – ψl) and structural traits (specific leaf area – SLA, leaf density – LD, leaf dry matter content – LDMC, leaf relative water content – LRWC) of leaves of eight woody species in two sites with slightly different microclimate (north‐ versus south‐facing slopes) in southern Spain. Plant recovery and survival was estimated after the summer drought period.
  • We found high trait variability between species. In most variables, phenotypic plasticity was lower in the drier site. Phenotypic plasticity of SLA and LDMC correlated negatively with drought survival, which suggests a trade‐off between them. On the other hand, high phenotypic plasticity of SLA and LDMC was positively related to traits associated with rapid recovery and growth after the drought period.
  • Although phenotypic plasticity is generally seen as favourable during stress conditions, here it seemed beneficial for favourable conditions. We propose that in environments with fluctuating drought periods there can be a trade‐off between drought survival and growth during favourable conditions. When climate become drier, species with high drought survival but low phenotypic plasticity might be selected for.
  相似文献   

4.
Eurya japonica occurs in diverse light environments through seed dispersal by birds. As the seed size is extremely small, we hypothesized that newly germinated seedlings with restricted depth of roots and length of the hypocotyl would suffer high mortality due to increased transpiration in sunny habitats and low light in shady habitats. We also expected that surviving seedlings would differ in leaf traits between habitats as a result of selection. We aimed to determine how photosynthetic traits differ between habitats and how leaf structure is related to this difference. We examined photosynthesis and leaf morpho‐anatomy for plants cloned from cuttings collected from the forest understory (shade population) and neighboring roadsides and cut‐over areas (sun population) and then grown under two irradiances (18.5% and 100% sunlight) in an experimental garden. Under growth in 100% sunlight, cloned plants from the sun population exhibited significantly greater area‐based photosynthetic capacity compared to cloned plants from the shade population at a comparable stomatal conductance, which was attributable to a higher area‐based leaf nitrogen concentration. On the other hand, mean values of photosynthetic capacity did not significantly differ between the two populations. Cloned plants from the sun population had significantly thicker leaf laminas and spongy tissue and lower stomatal density compared to cloned plants from the shade population. Thickened leaf lamina might have increased leaf tolerance to physical stresses in open habitats. The variation in leaf morpho‐anatomy between the two populations can be explained in terms of the economy of leaf photosynthetic tissue.  相似文献   

5.
  • Environmental gradients, and particularly climatic variables, exert a strong influence on plant distribution and, potentially, population genetic diversity and differentiation. Differences in water availability can cause among‐population variation in ecological processes and can thus interrupt populations’ connectivity and isolate them environmentally. The present study examines the effect of environmental heterogeneity on plant populations due to environmental isolation unrelated to geographic distance.
  • Using AFLP markers, we analyzed genetic diversity and differentiation among 12 Salvia spinosa populations and 13 Salvia syriaca populations from three phytogeographical regions (Mediterranean, Irano‐Turanian and Saharo‐Arabian) representing the extent of the species’ geographic range in Jordan. Differences in geographic location and climate were considered in the analyses.
  • For both species, flowering phenology varied among populations and regions. Irano‐Turanian and Saharo‐Arabian populations had higher genetic diversity than Mediterranean populations, and genetic diversity increased significantly with increasing temperature. Genetic diversity in Salvia syriaca was affected by population size, while genetic diversity responded to drought in S. spinosa. For both species, high levels of genetic differentiation were found as well as two well‐supported phytogeographical groups of populations, with Mediterranean populations clustering in one group and the Irano‐Turanian and Saharo‐Arabian populations in another. Genetic distance was significantly correlated to environmental distance, but not to geographic distance.
  • Our data indicate that populations from moist vs. arid environments are environmentally isolated, where environmental gradients affect their flowering phenology, limit gene flow and shape their genetic structure. We conclude that environmental heterogeneity may act as driver for the observed variation in genetic diversity.
  相似文献   

6.
The aim of this study was to systematically analyze the potential and limitations of using plant functional trait observations from global databases versus in situ data to improve our understanding of vegetation impacts on ecosystem functional properties (EFPs). Using ecosystem photosynthetic capacity as an example, we first provide an objective approach to derive robust EFP estimates from gross primary productivity (GPP) obtained from eddy covariance flux measurements. Second, we investigate the impact of synchronizing EFPs and plant functional traits in time and space to evaluate their relationships, and the extent to which we can benefit from global plant trait databases to explain the variability of ecosystem photosynthetic capacity. Finally, we identify a set of plant functional traits controlling ecosystem photosynthetic capacity at selected sites. Suitable estimates of the ecosystem photosynthetic capacity can be derived from light response curve of GPP responding to radiation (photosynthetically active radiation or absorbed photosynthetically active radiation). Although the effect of climate is minimized in these calculations, the estimates indicate substantial interannual variation of the photosynthetic capacity, even after removing site‐years with confounding factors like disturbance such as fire events. The relationships between foliar nitrogen concentration and ecosystem photosynthetic capacity are tighter when both of the measurements are synchronized in space and time. When using multiple plant traits simultaneously as predictors for ecosystem photosynthetic capacity variation, the combination of leaf carbon to nitrogen ratio with leaf phosphorus content explains the variance of ecosystem photosynthetic capacity best (adjusted R2 = 0.55). Overall, this study provides an objective approach to identify links between leaf level traits and canopy level processes and highlights the relevance of the dynamic nature of ecosystems. Synchronizing measurements of eddy covariance fluxes and plant traits in time and space is shown to be highly relevant to better understand the importance of intra‐ and interspecific trait variation on ecosystem functioning.  相似文献   

7.
  • Stomata modulate the exchange of water and CO2 between plant and atmosphere. Although stomatal density is known to affect CO2 diffusion into the leaf and thus photosynthetic rate, the effect of stomatal density and patterning on CO2 assimilation is not fully understood.
  • We used wild types Col‐0 and C24 and stomatal mutants sdd1‐1 and tmm1 of Arabidopsis thaliana, differing in stomatal density and pattern, to study the effects of these variations on both stomatal and mesophyll conductance and CO2 assimilation rate. Anatomical parameters of stomata, leaf temperature and carbon isotope discrimination were also assessed.
  • Our results indicate that increased stomatal density enhanced stomatal conductance in sdd1‐1 plants, with no effect on photosynthesis, due to both unchanged photosynthetic capacity and decreased mesophyll conductance. Clustering (abnormal patterning formed by clusters of two or more stomata) and a highly unequal distribution of stomata between the adaxial and abaxial leaf sides in tmm1 mutants also had no effect on photosynthesis.
  • Except at very high stomatal densities, stomatal conductance and water loss were proportional to stomatal density. Stomatal formation in clusters reduced stomatal dynamics and their operational range as well as the efficiency of CO2 transport.
  相似文献   

8.
  • The realisation of manned space exploration requires the development of Bioregenerative Life Support Systems (BLSS). In such self‐sufficient closed habitats, higher plants have a fundamental role in air regeneration, water recovery, food production and waste recycling. In the space environment, ionising radiation represents one of the main constraints to plant growth.
  • In this study, we explore whether low doses of heavy ions, namely Ca 25 Gy, delivered at the seed stage, may induce positive outcomes on growth and functional traits in plants of Solanum lycopersicum L. ‘Microtom’. After irradiation of seed, plant growth was monitored during the whole plant life cycle, from germination to fruit ripening. Morphological parameters, photosynthetic efficiency, leaf anatomical functional traits and antioxidant production in leaves and fruits were analysed.
  • Our data demonstrate that irradiation of seeds with 25 Gy Ca ions does not prevent achievement of the seed‐to‐seed cycle in ‘Microtom’, and induces a more compact plant size compared to the control. Plants germinated from irradiated seeds show better photochemical efficiency than controls, likely due to the higher amount of D1 protein and photosynthetic pigment content. Leaves of these plants also had smaller cells with a lower number of chloroplasts. The dose of 25 Gy Ca ions is also responsible for positive outcomes in fruits: although developing a lower number of berries, plants germinated from irradiated seeds produce larger berries, richer in carotenoids, ascorbic acid and anthocyanins than controls.
  • These specific traits may be useful for ‘Microtom’ cultivation in BLSS in space, in so far as the crew members could benefit from fresh food richer in functional compounds that can be directly produced on board.
  相似文献   

9.
To date, the implications of the predicted greater intra‐annual variability and extremes in precipitation on ecosystem functioning have received little attention. This study presents results on leaf‐level physiological responses of five species covering the functional groups grasses, forbs, and legumes in the understorey of a Mediterranean oak woodland, with increasing precipitation variability, without altering total annual precipitation inputs. Although extending the dry period between precipitation events from 3 to 6 weeks led to increased soil moisture deficit, overall treatment effects on photosynthetic performance were not observed in the studied species. This resilience to prolonged water stress was explained by different physiological and morphological strategies to withstand periods below the wilting point, that is, isohydric behavior in Agrostis, Rumex, and Tuberaria, leaf succulence in Rumex, and taproots in Tolpis. In addition, quick recovery upon irrigation events and species‐specific adaptations of water‐use efficiency with longer dry periods and larger precipitation events contributed to the observed resilience in productivity of the annual plant community. Although none of the species exhibited a change in cover with increasing precipitation variability, leaf physiology of the legume Ornithopus exhibited signs of sensitivity to moisture deficit, which may have implications for the agricultural practice of seeding legume‐rich mixtures in Mediterranean grassland‐type systems. This highlights the need for long‐term precipitation manipulation experiments to capture possible directional changes in species composition and seed bank development, which can subsequently affect ecosystem state and functioning.  相似文献   

10.
11.
  • Identifying the mechanisms of compensation to insect herbivory remains a major challenge in plant biology and evolutionary ecology. Most previous studies have addressed plant compensatory responses to one or two levels of insect herbivory, and the underlying traits mediating such responses remain elusive in many cases.
  • We evaluated responses associated with compensation to multiple intensities of leaf damage (0% control, 10%, 25%, 50%, 75% of leaf area removed) by means of mechanical removal of foliar tissue and application of a caterpillar (Spodoptera exigua) oral secretions in 3‐month‐old wild cotton plants (Gossypium hirsutum). Four weeks post‐treatment, we measured plant growth and multiple traits associated with compensation, namely: changes in above‐ and belowground, biomass and the concentration of nutrients (nitrogen and phosphorus) and non‐structural carbon reserves (starch and soluble sugars) in roots, stems and leaves.
  • We found that wild cotton fully compensated in terms of growth and biomass allocation when leaf damage was low (10%), whereas moderate (25%) to high leaf damage in some cases led to under‐compensation. Nonetheless, high levels of leaf removal (50% and 75%) in most cases did not cause further reductions in height and allocation to leaf and stem biomass relative to low and moderate damage. There were significant positive effects of leaf damage on P concentration in leaves and stems, but not roots, as well as a negative effect on soluble sugars in roots.
  • These results indicate that wild cotton fully compensated for a low level of leaf damage but under‐compensated under moderate to high leaf damage, but can nonetheless sustain growth despite increasing losses to herbivory. Such responses were possibly mediated by a re‐allocation of carbohydrate reserves from roots to shoots.
  相似文献   

12.
  • Under natural conditions, light exposure for Mediterranean shrubs can be highly variable, especially during cloudy days or under a canopy, and can interfere with other environmental factors such as temperature and water availability.
  • With the aim of decoupling the effect of radiation and temperature from water availability, we conducted an experiment where two perennial and three summer semi‐deciduous shrub species were subjected to different levels of irradiation. In order to follow plant responses to light exposure, we measured gas exchange, photosystem II photochemical efficiency, photosynthetic pigments and leaf mass area in spring and summer.
  • Results showed that all study species presented a plastic response to different light conditions, and that light‐related traits varied in a coordinated manner. Summer semi‐deciduous species exhibited a more opportunistic response, with higher photosynthesis rates in full sun, but under shade conditions, the two strategies presented similar assimilation rates. Stomatal conductance did not show such a drastic response as photosynthetsis, being related to changes in WUE. Daily cycles of Fv/Fm revealed a slight photoinhibitory response during summer, mainly in perennial species. In all cases photosynthetic pigments adjusted to the radiation level; leaves had lower chlorophyll content, higher pool of xanthophylls and higher proportion of the de‐epoxydaded state of xanthophylls under sun conditions. Lutein content increased in relation to the xanthophyll pool under shade conditions.
  • Our results evidenced that radiation is an important driving factor controlling morphological and physiological status of Mediterranean shrub species, independently of water availability. Summer semi‐deciduous species exhibit a set of traits with higher response variability, maximising their photosynthetic assimilation under different sun conditions.
  相似文献   

13.
  • The performance of seedlings is crucial for the survival and persistence of plant populations. Although drought frequently occurs in floodplains and can cause seedling mortality, studies on the effects of drought on seedlings of floodplain grasslands are scarce. We tested the hypotheses that drought reduces aboveground biomass, total biomass, plant height, number of leaves, leaf area and specific leaf area (SLA), and increases root biomass and root‐mass fraction (RMF) and that seedlings from species of wet floodplain grasslands are more affected by drought than species of dry grasslands.
  • In a greenhouse study, we exposed seedlings of three confamilial pairs of species (Pimpinella saxifraga, Selinum carvifolia, Veronica teucrium, Veronica maritima, Sanguisorba minor, Sanguisorba officinalis) to increasing drought treatments. Within each plant family, one species is characteristic of wet and one of dry floodplain grasslands, confamilial in order to avoid phylogenetic bias of the results.
  • In accordance with our hypotheses, drought conditions reduced aboveground biomass, total biomass, plant height, number of leaves and leaf area. Contrary to our hypotheses, drought conditions increased SLA and decreased root biomass and RMF of seedlings. Beyond the effects of the families, the results were species‐specific (V. maritima being the most sensitive species) and habitat‐specific. Species indicative of wet floodplain grasslands appear to be more sensitive to drought than species indicative of dry grasslands.
  • Because of species‐ and habitat‐specific responses to reduced water availability, future drought periods due to climate change may severely affect some species from dry and wet habitats, while others may be unaffected.
  相似文献   

14.
15.
  • The fast growth of mulberry depends on high water consumption, but considerable variations in drought tolerance exist across different cultivars. Physiological and anatomical mechanisms are important to plant survival under drought. However, few research efforts have been made to reveal the relationships of these two aspects in relation to drought tolerance.
  • In this study, growth rates, leaf functional physiology and anatomical characteristics of leaf and xylem of 1‐year‐old saplings of seven mulberry cultivars at a common garden were compared. Their relationships were also explored.
  • Growth, leaf physiology and anatomy were significantly different among the tested cultivars. Foliar stable carbon isotope composition (δ13C) was negatively correlated with growth rates, and closely related to several leaf and xylem anatomical traits. Particularly, leaf thickness, predicted hydraulic conductivity and vessel element length jointly contributed 77% of the variability in δ13C. Cultivar Wupu had small stomata, intermediate leaf thickness, the smallest hydraulically weighted vessel diameter and highest vessel number, and higher δ13C; Yunguo1 had high abaxial stomatal density, low specific leaf area, moderate hydraulic conductivity and δ13C; these are beneficial features to reduce leaf water loss and drought‐induced xylem embolism in arid areas. Cultivar Liaolu11 had contrasting physiological and anatomical traits compared with the previous two cultivars, suggesting that it might be sensitive to drought.
  • Our findings indicate that growth and δ13C are closely associated with both leaf and xylem anatomical characteristics in mulberry, which provides fundamental information to assist evaluation of drought tolerance in mulberry cultivars and in other woody trees.
  相似文献   

16.
Leaf functional traits are widely used to detect and explain adaptations that enable plants to live under various environmental conditions. This study aims to determine the difference in leaf functional traits among four forest types of Pinus massoniana coniferous and broad‐leaved mixed forests by leaf morphological, nutrients, and stoichiometric traits in the subtropical mountain, Southeastern China. Our study indicated that the evergreen conifer species of P. massoniana had higher leaf dry matter content (LDMC), leaf C content, C/N and C/P ratios, while the three deciduous broad‐leaved species of L. formosana, Q. tissima, and P. strobilacea had higher specific leaf area (SLA), leaf N, leaf P nutrient contents, and N/P ratio in the three mixed forest types. The results showed that the species of P. massoniana has adapted to the nutrient‐poor environment by increasing their leaf dry matter for higher construction costs thereby reducing water loss and reflects a resource conservation strategy. In contrast, the three species of L. formosana, Q. tissima, and P. strobilacea exhibited an optimized resource acquisition strategy rather than resource conservation strategy in the subtropical mountain of southeastern China. Regarding the four forest types, the three mixed forest types displayed increased plant leaf nutrient contents when compared to the pure P. massoniana forest, especially the P. massonianaL. formosana mixed forest type (PLM). Overall, variation in leaf functional traits among different forest types may play an adaptive role in the successful survival of plants under diverse environments because leaf functional traits can lead to significant effects on leaf function, especially for their acquisition of nutrients and use of light. The results of this study are beneficial to reveal the changes in plant leaf functional traits at the regional scale, which will provide a foundation for predicting changes in leaf traits and adaptation in the future environment.  相似文献   

17.
  • This work aims to study seeds of the endemic species Astragalus aquilanus from four different populations of central Italy. We investigated seed morpho‐colorimetric features (shape and size) and chemical differences (through infrared spectroscopy) among populations and between dark and light seeds.
  • Seed morpho‐colorimetric quantitative variables, describing shape, size and colour traits, were measured using image analysis techniques. Fourier transform infrared (FT‐IR) spectroscopy was used to attempt seed chemical characterisation. The measured data were analysed by step‐wise linear discriminant analysis (LDA). Moreover, we analysed the correlation between the four most important traits and six climatic variables extracted from WorldClim 2.0.
  • The LDA on seeds traits shows clear differentiation of the four populations, which can be attributed to different chemical composition, as confirmed by Wilk's lambda test (< 0.001). A strong correlation between morphometric traits and temperature (annual mean temperature, mean temperature of the warmest and coolest quarter), colorimetric traits and precipitation (annual precipitation, precipitation of wettest and driest quarter) was observed.
  • The characterisation of A. aquilanus seeds shows large intraspecific plasticity both in morpho‐colorimetric and chemical composition. These results confirm the strong relationship between the type of seed produced and the climatic variables.
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号