首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Pharmacologically active compounds with preferential cytotoxic activity for senescent cells, known as senolytics, can ameliorate or even revert pathological manifestations of senescence in numerous preclinical mouse disease models, including cancer models. However, translation of senolytic therapies to human disease is hampered by their suboptimal specificity for senescent cells and important toxicities that narrow their therapeutic windows. We have previously shown that the high levels of senescence‐associated lysosomal β‐galactosidase (SA‐β‐gal) found within senescent cells can be exploited to specifically release tracers and cytotoxic cargoes from galactose‐encapsulated nanoparticles within these cells. Here, we show that galacto‐conjugation of the BCL‐2 family inhibitor Navitoclax results in a potent senolytic prodrug (Nav‐Gal), that can be preferentially activated by SA‐β‐gal activity in a wide range of cell types. Nav‐Gal selectively induces senescent cell apoptosis and has a higher senolytic index than Navitoclax (through reduced activation in nonsenescent cells). Nav‐Gal enhances the cytotoxicity of standard senescence‐inducing chemotherapy (cisplatin) in human A549 lung cancer cells. Concomitant treatment with cisplatin and Nav‐Gal in vivo results in the eradication of senescent lung cancer cells and significantly reduces tumour growth. Importantly, galacto‐conjugation reduces Navitoclax‐induced platelet apoptosis in human and murine blood samples treated ex vivo, and thrombocytopenia at therapeutically effective concentrations in murine lung cancer models. Taken together, we provide a potentially versatile strategy for generating effective senolytic prodrugs with reduced toxicities.  相似文献   

2.
Senescent cells are present in premalignant lesions and sites of tissue damage and accumulate in tissues with age. In vivo identification, quantification and characterization of senescent cells are challenging tasks that limit our understanding of the role of senescent cells in diseases and aging. Here, we present a new way to precisely quantify and identify senescent cells in tissues on a single‐cell basis. The method combines a senescence‐associated beta‐galactosidase assay with staining of molecular markers for cellular senescence and of cellular identity. By utilizing technology that combines flow cytometry with high‐content image analysis, we were able to quantify senescent cells in tumors, fibrotic tissues, and tissues of aged mice. Our approach also yielded the finding that senescent cells in tissues of aged mice are larger than nonsenescent cells. Thus, this method provides a basis for quantitative assessment of senescent cells and it offers proof of principle for combination of different markers of senescence. It paves the way for screening of senescent cells for identification of new senescence biomarkers, genes that bypass senescence or senolytic compounds that eliminate senescent cells, thus enabling a deeper understanding of the senescent state in vivo.  相似文献   

3.
Adriamycin, an anthracycline antibiotic, has been used for the treatment of various types of tumours. Adriamycin induces at least two distinct types of growth repression, such as senescence and apoptosis, in a concentration‐dependent manner. Cellular senescence is a condition in which cells are unable to proliferate further, and senescent cells frequently show polyploidy. Although abrogation of cell division is thought to correlate with polyploidization, the mechanisms underlying induction of polyploidization in senescent cells are largely unclear. We wished, therefore, to explore the role of cyclin B1 level in polyploidization of Adriamycin‐induced senescent cells. A subcytotoxic concentration of Adriamycin induced polyploid cells having the features of senescence, such as flattened and enlarged cell shape and activated β‐galactosidase activity. In DNA damage‐induced senescent cells, the levels of cyclin B1 were transiently increased and subsequently decreased. The decrease in cyclin B1 levels occurred in G2 cells during polyploidization upon treatment with a subcytotoxic concentration of Adriamycin. In contrast, neither polyploidy nor a decrease in cyclin B1 levels was induced by treatment with a cytotoxic concentration of Adriamycin. These results suggest that a decrease in cyclin B1 levels is induced by DNA damage, resulting in polyploidization in DNA damage‐induced senescence.  相似文献   

4.
Senescent cells accumulate in tissues during aging and are considered to underlie several aging‐associated phenotypes and diseases. We recently reported that the elimination of p19ARF‐expressing senescent cells from lung tissue restored tissue function and gene expression in middle‐aged (12‐month‐old) mice. The aging of lung tissue increases the risk of pulmonary diseases such as emphysema, and cellular senescence is accelerated in emphysema patients. However, there is currently no direct evidence to show that cellular senescence promotes the pathology of emphysema, and the involvement of senescence in the development of this disease has yet to be clarified. We herein demonstrated that p19ARF facilitated the development of pulmonary emphysema in mice. The elimination of p19ARF‐expressing cells prevented lung tissue from elastase‐induced lung dysfunction. These effects appeared to depend on reduced pulmonary inflammation, which is enhanced after elastase stimulation. Furthermore, the administration of a senolytic drug that selectively kills senescent cells attenuated emphysema‐associated pathologies. These results strongly suggest the potential of senescent cells as therapeutic/preventive targets for pulmonary emphysema.  相似文献   

5.
Despite intense interest in human mesenchymal stromal cells (MSCs), monitoring of the progressive occurrence of senescence has been hindered by the lack of efficient detection tools. Here, the discovery of a novel MSC senescence‐specific fluorescent probe (CyBC9) identified by a high‐throughput screen is reported. Compared with the prototypical senescence‐associated β‐galactosidase (SA‐β‐gal) staining, the CyBC9 assay is rapid (2 h) and nontoxic and can thus be applied to live cells. It is shown that CyBC9 is able to stain early and late senescent populations both in monolayer‐ and in microcarrier‐based cultures. Finally, to investigate the mechanism of CyBC9, colocalization assays are performed and it is found that CyBC9 is accumulated in the mitochondria of senescent MSCs presumably due to the loss of membrane potential. Taken together, it is expected that CyBC9 will be a useful tool to ameliorate cell therapy through rapid and early screening of senescent phenotypes in clinically relevant MSCs.  相似文献   

6.
Cellular senescence, a stress‐induced irreversible cell cycle arrest, has been defined for mitotic cells and is implicated in aging of replicative tissues. Age‐related functional decline in the brain is often attributed to a failure of protein homeostasis (proteostasis), largely in postmitotic neurons, which accordingly is a process distinct by definition from senescence. It is nevertheless possible that proteostasis failure and cellular senescence have overlapping molecular mechanisms. Here, we identify postmitotic cellular senescence as an adaptive stress response to proteostasis failure. Primary rat hippocampal neurons in long‐term cultures show molecular changes indicative of both senescence (senescence‐associated β‐galactosidase, p16, and loss of lamin B1) and proteostasis failure relevant to Alzheimer's disease. In addition, we demonstrate that the senescent neurons exhibit resistance to stress. Importantly, treatment of the cultures with an mTOR antagonist, protein synthesis inhibitor, or chemical compound that reduces the amount of protein aggregates relieved the proteotoxic stresses as well as the appearance of senescence markers. Our data propose mechanistic insights into the pathophysiological brain aging by establishing senescence as a primary cell‐autonomous neuroprotective response.  相似文献   

7.
Cellular senescence is an anti‐proliferative program that restricts the propagation of cells subjected to different kinds of stress. Cellular senescence was initially described as a cell‐autonomous tumor suppressor mechanism that triggers an irreversible cell cycle arrest that prevents the proliferation of damaged cells at risk of neoplastic transformation. However, discoveries during the last decade have established that senescent cells can also impact the surrounding tissue microenvironment and the neighboring cells in a non‐cell‐autonomous manner. These non‐cell‐autonomous activities are, in part, mediated by the selective secretion of extracellular matrix degrading enzymes, cytokines, chemokines and immune modulators, which collectively constitute the senescence‐associated secretory phenotype. One of the key functions of the senescence‐associated secretory phenotype is to attract immune cells, which in turn can orchestrate the elimination of senescent cells. Interestingly, the clearance of senescent cells seems to be critical to dictate the net effects of cellular senescence. As a general rule, the successful elimination of senescent cells takes place in processes that are considered beneficial, such as tumor suppression, tissue remodeling and embryonic development, while the chronic accumulation of senescent cells leads to more detrimental consequences, namely, cancer and aging. Nevertheless, exceptions to this rule may exist. Now that cellular senescence is in the spotlight for both anti‐cancer and anti‐aging therapies, understanding the precise underpinnings of senescent cell removal will be essential to exploit cellular senescence to its full potential.  相似文献   

8.
9.
Cardiovascular disease is the leading cause of death in individuals over 60 years old. Aging is associated with an increased prevalence of coronary artery disease and a poorer prognosis following acute myocardial infarction (MI). With age, senescent cells accumulate in tissues, including the heart, and contribute to age‐related pathologies. However, the role of senescence in recovery following MI has not been investigated. In this study, we demonstrate that treatment of aged mice with the senolytic drug, navitoclax, eliminates senescent cardiomyocytes and attenuates profibrotic protein expression in aged mice. Importantly, clearance of senescent cells improved myocardial remodelling and diastolic function as well as overall survival following MI. These data provide proof‐of‐concept evidence that senescent cells are major contributors to impaired function and increased mortality following MI and that senolytics are a potential new therapeutic avenue for MI.  相似文献   

10.
Ceramide has been proposed to be a mediator of replicative senescence. Our aim was to determine whether ceramide induces senescence in vascular endothelial cells. Human umbilical vein endothelial cells were cultured to different population doubling levels and ceramide levels were quantitated. The endogenous levels of ceramide increased 2.4‐fold with senescence onset. Low passage cells were chronically treated with exogenous C6‐ceramide. This treatment induced a senescent phenotype as measured by an inhibition of cell proliferation and DNA replication while increasing senescence‐associated β‐galactosidase expression. This is the second cell type in which ceramide induces senescence, thus implicating ceramide as a general mediator of cellular senescence. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
In senescent cells, a DNA damage response drives not only irreversible loss of replicative capacity but also production and secretion of reactive oxygen species (ROS) and bioactive peptides including pro‐inflammatory cytokines. This makes senescent cells a potential cause of tissue functional decline in aging. To our knowledge, we show here for the first time evidence suggesting that DNA damage induces a senescence‐like state in mature postmitotic neurons in vivo. About 40–80% of Purkinje neurons and 20–40% of cortical, hippocampal and peripheral neurons in the myenteric plexus from old C57Bl/6 mice showed severe DNA damage, activated p38MAPkinase, high ROS production and oxidative damage, interleukin IL‐6 production, heterochromatinization and senescence‐associated β‐galactosidase activity. Frequencies of these senescence‐like neurons increased with age. Short‐term caloric restriction tended to decrease frequencies of positive cells. The phenotype was aggravated in brains of late‐generation TERC?/? mice with dysfunctional telomeres. It was fully rescued by loss of p21(CDKN1A) function in late‐generation TERC?/?CDKN1A?/? mice, indicating p21 as the necessary signal transducer between DNA damage response and senescence‐like phenotype in neurons, as in senescing fibroblasts and other proliferation‐competent cells. We conclude that a senescence‐like phenotype is possibly not restricted to proliferation‐competent cells. Rather, dysfunctional telomeres and/or accumulated DNA damage can induce a DNA damage response leading to a phenotype in postmitotic neurons that resembles cell senescence in multiple features. Senescence‐like neurons might be a source of oxidative and inflammatory stress and a contributor to brain aging.  相似文献   

12.
13.
14.
Cellular senescence contributes to organismal development, aging, and diverse pathologies, yet available assays to detect senescent cells remain unsatisfactory. Here, we designed and synthesized a lipophilic, biotin‐linked Sudan Black B (SBB) analogue suitable for sensitive and specific, antibody‐enhanced detection of lipofuscin‐containing senescent cells in any biological material. This new hybrid histo‐/immunochemical method is easy to perform, reliable, and universally applicable to assess senescence in biomedicine, from cancer research to gerontology.  相似文献   

15.
Summary: Senescence‐associated β‐galactosidase (SA‐β‐gal) activity is widely used as a marker of cellular senescence and as an indicator of organismal aging. Here, we report that SA‐β‐gal activity is present in the visceral endoderm layer of early postimplantation mouse embryos in predictable patterns that vary as the embryo progresses in development. However, determination of the mitotic index and analysis of the expression of Cdkn1a (p21), a marker of senescent cells, do not indicate cellular senescence. Instead, analysis of embryos in culture revealed the presence of SA‐β‐gal activity in apical vacuoles of visceral endoderm cells likely a reflection of acidic β‐galactosidase function in these organelles. SA‐β‐gal serves as a practical marker of the dynamics of the visceral endoderm that can be applied to developmental as well as functional studies of early mammalian embryos. genesis 52:300–308, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
Cellular senescence, a state of irreversible growth arrest triggered by various stressors, engages in a category of pathological processes, whereby senescent cells accumulate in mitotic tissues. Senolytics as novel medicine against aging and various diseases through the elimination of senescent cells has emerged rapidly in recent years. Exercise is a potent anti‐aging and anti‐chronic disease medicine, which has shown the capacity to lower the markers of cellular senescence over the past decade. However, whether exercise is a senolytic medicine for aging and various diseases remains unclear. Here, we have conducted a systematic review of the published literature studying the senolytic effects of exercise or physical activity on senescent cells under various states in both human and animal models. Exercise can reduce the markers of senescent cells in healthy humans, while it lowered the markers of senescent cells in obese but not healthy animals. The discrepancy between human and animal studies may be due to the relatively small volume of research and the variations in markers of senescent cells, types of cells/tissues, and health conditions. These findings suggest that exercise has senolytic properties under certain conditions, which warrant further investigations.  相似文献   

17.
Cellular senescence is a state of stable proliferation arrest of cells. The senescence pathway has many beneficial effects and is seen to be activated in damaged/stressed cells, as well as during embryonic development and wound healing. However, the persistence and accumulation of senescent cells in various tissues can also impair function and have been implicated in the pathogenesis of many age‐related diseases. Osteoarthritis (OA), a severely debilitating chronic condition characterized by progressive tissue remodeling and loss of joint function, is the most prevalent disease of the synovial joints, and increasing age is the primary OA risk factor. The profile of inflammatory and catabolic mediators present during the pathogenesis of OA is strikingly similar to the secretory profile observed in ‘classical’ senescent cells. During OA, chondrocytes (the sole cell type present within articular cartilage) exhibit increased levels of various senescence markers, such as senescence‐associated beta‐galactosidase (SAβGal) activity, telomere attrition, and accumulation of p16ink4a. This suggests the hypothesis that senescence of cells within joint tissues may play a pathological role in the causation of OA. In this review, we discuss the mechanisms by which senescent cells may predispose synovial joints to the development and/or progression of OA, as well as touching upon various epigenetic alterations associated with both OA and senescence.  相似文献   

18.
Although aging and senescence have been extensively studied in the past few decades, however, there is lack of clinical treatment available for anti‐aging. This study presents the effects of berberine (BBR) on the aging process resulting in a promising extension of lifespan in model organisms. BBR extended the replicative lifespan, improved the morphology, and boosted rejuvenation markers of replicative senescence in human fetal lung diploid fibroblasts (2BS and WI38). BBR also rescued senescent cells with late population doubling (PD). Furthermore, the senescence‐associated β‐galactosidase (SA‐β‐gal)‐positive cell rates of late PD cells grown in the BBR‐containing medium were ~72% lower than those of control cells, and its morphology resembled that of young cells. Mechanistically, BBR improved cell growth and proliferation by promoting entry of cell cycles from the G0 or G1 phase to S/G2‐M phase. Most importantly, BBR extended the lifespan of chemotherapy‐treated mice and naturally aged mice by ~52% and ~16.49%, respectively. The residual lifespan of the naturally aged mice was extended by 80%, from 85.5 days to 154 days. The oral administration of BBR in mice resulted in significantly improved health span, fur density, and behavioral activity. Therefore, BBR may be an ideal candidate for the development of an anti‐aging medicine.  相似文献   

19.
Senescent cells accumulate with age in multiple tissues and may cause age‐associated disease and functional decline. In vitro, senescent cells induce senescence in bystander cells. To see how important this bystander effect may be for accumulation of senescent cells in vivo, we xenotransplanted senescent cells into skeletal muscle and skin of immunocompromised NSG mice. 3 weeks after the last transplantation, mouse dermal fibroblasts and myofibres displayed multiple senescence markers in the vicinity of transplanted senescent cells, but not where non‐senescent or no cells were injected. Adjacent to injected senescent cells, the magnitude of the bystander effect was similar to the increase in senescence markers in myofibres between 8 and 32 months of age. The age‐associated increase of senescence markers in muscle correlated with fibre thinning, a widely used marker of muscle aging and sarcopenia. Senescent cell transplantation resulted in borderline induction of centrally nucleated fibres and no significant thinning, suggesting that myofibre aging might be a delayed consequence of senescence‐like signalling. To assess the relative importance of the bystander effect versus cell‐autonomous senescence, we compared senescent hepatocyte frequencies in livers of wild‐type and NSG mice under ad libitum and dietary restricted feeding. This enabled us to approximate cell‐autonomous and bystander‐driven senescent cell accumulation as well as the impact of immunosurveillance separately. The results suggest a significant impact of the bystander effect for accumulation of senescent hepatocytes in liver and indicate that senostatic interventions like dietary restriction may act as senolytics in immunocompetent animals.  相似文献   

20.
Phenyl‐2‐pyridyl ketoxime (PPKO) was found to be one of the small molecules enriched in the extracellular matrix of near‐senescent human diploid fibroblasts (HDFs). Treatment of young HDFs with PPKO reduced the viability of young HDFs in a dose‐ and time‐dependent manner and resulted in senescence‐associated β‐galactosidase (SA‐β‐gal) staining and G2/M cell cycle arrest. In addition, the levels of some senescence‐associated proteins, such as phosphorylated ERK1/2, caveolin‐1, p53, p16ink4a, and p21waf1, were elevated in PPKO‐treated cells. To monitor the effect of PPKO on cell stress responses, reactive oxygen species (ROS) production was examined by flow cytometry. After PPKO treatment, ROS levels transiently increased at 30 min but then returned to baseline at 60 min. The levels of some antioxidant enzymes, such as catalase, peroxiredoxin II and glutathione peroxidase I, were transiently induced by PPKO treatment. SOD II levels increased gradually, whereas the SOD I and III levels were biphasic during the experimental periods after PPKO treatment. Cellular senescence induced by PPKO was suppressed by chemical antioxidants, such as N‐acetylcysteine, 2,2,6,6‐tetramethylpiperidinyloxy, and L‐buthionine‐(S,R)‐sulfoximine. Furthermore, PPKO increased nitric oxide (NO) production via inducible NO synthase (iNOS) in HDFs. In the presence of NOS inhibitors, such as L‐NG‐nitroarginine methyl ester and L‐NG‐monomethylarginine, PPKO‐induced transient NO production and SA‐β‐gal staining were abrogated. Taken together, these results suggest that PPKO induces cellular senescence in association with transient ROS and NO production and the subsequent induction of senescence‐associated proteins .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号