首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Woody encroachment is becoming common in tropical savannas. We studied natural seed rain and performed seed addition experiments in a Brazilian savanna that had not been burned for several decades. We found greater abundance of fire‐sensitive species in the seed rain, likely contributing to woody encroachment. Flexible fire management policies that allow for natural and prescribed fires may be required to maintain savanna diversity.  相似文献   

2.
Aim Restoration of habitats may be used as a conservation tool when ecosystems have lost their natural structure, dynamics or functioning over large areas. Controlled and planned use of fire could be an effective way to restore habitats of many threatened species in boreal forests where fire suppression has been effective. We asked whether the large‐scale landscape context affects the occurrence of rare and threatened species in forest habitats that have been burned to restore their fire‐related structures. Location Boreal forests in southern Finland. Methods We designed a large‐scale field experiment that included nine Pinus sylvestris forests (5–10 ha each) in southern Finland. Sites were located in two regions: (1) in eastern region with shorter management history and (2) in western region where intensive forestry has continued longer. We evaluated whether restoration of dead/burned wood is beneficial for rare and conservation‐dependent species and measured the recovery of pyrophilous and red‐listed insects (beetles and flatbugs) in burned forests, using standardized sampling effort. Altogether, 956 individuals of 29 red‐listed and pyrophilous species were sampled. Results Rare species colonized areas quickly, but there was a clear difference in species richness between the regions. The eastern forests harboured higher species richness after restoration. In these sites, the average species richness was 13.7 species per site, whereas in western forests it was 5.0 species per site. Similar pattern was also observed in subgroups: the corresponding numbers for pyrophilous species were 9.7 vs. 3.8, for red‐listed 8.7 vs. 2.3 and for red‐listed pyrophiles 4.7 vs. 1.2. Main conclusions Introducing fire back to boreal forests can aid in the recovery of rare species, but the landscape context considerably affects the success of restoring species. If restored habitats are located in landscapes that have lost their natural properties long ago, the success of restoration seems to be more challenging than in landscapes where habitats have been modified more recently.  相似文献   

3.
An overarching conclusion in the literature is that soil seed banks rarely contain many restoration‐target species and are often liabilities rather than assets to restoration. Our objective was to evaluate composition and spatial variation of seed banks and their potential contributions to restoration, including restoration‐target species such as rare species and those characterizing historical habitats. On 64 sites in a Midwestern U.S. oak savanna landscape, we sampled soil seed banks in seven habitat types (restored oak savannas, oak woodlands, and mesic prairies; unmanaged upland oak and mesic forests; and unmanaged and managed pine plantations). The germinable seed bank was exceptionally rich in restoration‐target species. In total for the 64 sites, seedlings of 127 species emerged from seed bank samples. Of the 101 native species, 56 were restoration‐target species, an unusually high number among seed bank studies. Restoration‐target species in seed banks included 13 threatened or endangered species, in addition to 43 other specialist species associated with high‐quality native habitats or on a floral list thought to characterize historical ecosystems. When analyzed across the 64‐site gradient, seed banks differed among the seven habitat types and varied with historical (1939) land use, recent management activities that restored open‐structured habitats, and biophysical gradients of tree density, soil drainage, and soil texture. While not all restoration‐target species were detected in the seed bank, the unusually high‐quality seed bank is a potential asset to restoration and was partly structured along environmental gradients across the landscape.  相似文献   

4.
Understanding species’ responses to fire regimes, particularly rare or threatened species, is important for land managers tasked with managing for biodiversity. Hickman's Allanaspides (Allanaspides hickmani, Anaspidesidae) is a rare, primitive, shrimp‐like crustacean, with high conservation value. It is restricted to a single catchment in the island state of Tasmania, Australia, where it occurs within moorland pools typically containing crayfish (Ombrastacoides spp.) burrows. Although its moorland habitat has a long history of firing, adverse fire regimes are a potential threat to the species. A large part of its range is subject to planned burning to help manage the detrimental effects of high‐intensity wildfires. The resilience of A. hickmani to low–moderate‐intensity fires was investigated over 13 years using a replicated before‐after‐control‐impact design. The fires resulted in an initial reduction in vegetation cover and surface water and an increase in water temperature. There was no effect of fire on A. hickmani captures 4 months after small‐scale, low‐intensity autumn burns. However, 5 months later, following an unintended larger‐scale, medium‐intensity spring burn, there was an 80–90% reduction in A. hickmani captures and their numbers did not recover until 6–9 years post‐fire. It is not known whether the reduced catch was due to a reduction in the number of A. hickmani or their movement from pools into crayfish burrows. These findings together with evidence of a varied fire history, including high‐intensity wildfires, within their range suggests that A. hickmani and its habitat are resilient to a range of fire frequencies and intensities provided that the fire regime does not degrade or lead to a complete loss of peat. Climate change predictions for warmer and drier summers in western Tasmania will increase the risk of peat loss. Planned burning is likely to be important for the protection of A. hickmani habitat from predicted adverse fire regimes.  相似文献   

5.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号