首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Propofol is one of the most extensively used intravenous anaesthetic agents, which has been found to improve the surgical intervention outcome of several types of cancer, including hepatocellular carcinoma (HCC). Additionally, in vitro and in vivo experiments have also indicated that propofol affects the biological behaviour of HCC. However, the underlying mechanisms of the surgical resection of HCC with propofol have not been fully understood. In the present study, we aimed to investigate the underlying mechanism of propofol inhibition of the growth and invasion of HCC cells. Our results showed that treatment with propofol suppressed the proliferation, invasion and migration of HCC in vitro. The subcutaneous xenograft tumour and orthotopic xenograft tumour experiments in nude mice showed that propofol significantly decreased tumour volumes, growth rates and the liver orthotopic xenograft tumour in vivo. Furthermore, the underlying mechanism investigations of the suppressive effects of propofol on HCC cells revealed that propofol treatment upregulated the expression levels of the candidate tumour suppressor miR-219-5p. Silencing of propofol-induced miR-219-5p using anti-miR-219-5p abrogated the inhibitory effects on the proliferation, migration and invasion of HCC cells exerted by propofol treatment. Additionally, we demonstrated that propofol reversed the epithelial-mesenchymal transition of Huh7 and SMMC7721 cells via miR-219-5p induction. The molecular mechanism behind these findings is that propofol-induced miR-219-5p inhibits HCC cell progression by targeting glypican-3 and subsequently results in the inhibition of Wnt/β-catenin signalling. Taken together, our study provides new insights into the advantages of the surgical intervention of HCC with propofol anaesthetization.  相似文献   

2.
Heart rate, occurrence of apnea, body temperature, quality of anesthesia and nest abandonment were compared during either propofol or isoflurane anesthesia of nesting female canvasback ducks (Aythya valisineria) at 15 to 18 days of incubation. One hundred eighteen canvasbacks were assigned randomly to three treatments so that nest abandonment could be compared among treatments from May to July 1995 and 1996. Sterile dummy silicone implants were placed during an abdominal laparotomy while ducks were anesthetized with either propofol or isoflurane, or ducks were flushed from the nest but not captured (control). Propofol was delivered through an intravenous catheter, while isoflurane was delivered in oxygen. Propofol provided smooth, rapid induction and recovery, whereas ducks recovering from isoflurane tended to struggle. At the nest, ducks in the propofol group were given additional boluses until they were lightly anesthetized, whereas birds that received isoflurane were released. All birds survived surgery but one death occurred prior to surgery in 1995 using propofol during a period without ventilation and monitoring. Adequate artificial ventilation is recommended to prevent complications. Heart rate declined significantly in both years during isoflurane anesthesia and in 1995 during propofol anesthesia but not 1996. During both isoflurane and propofol anesthesia, body temperature declined significantly over time. Nest abandonment was significantly different among treatments and occurred in all treatment groups in both years, but propofol (15%) and control groups (8%) had lower than expected abandonment compared to isoflurane (28%). Propofol offers several advantages over isoflurane for field use; equipment is easily portable, lower anesthetic cost, and ambient temperature does not alter physical characteristics of the drug. Advantages over isoflurane, including lower nest abandonment following intraabdominal radio transmitter placement, make propofol a good anesthetic choice for field studies.  相似文献   

3.
The general anesthetic propofol has been shown to be cardioprotective. However, its benefits when used in cardioplegia during cardiac surgery have not been demonstrated. In this study, we investigated the effects of propofol on metabolic stress, cardiac function, and injury in a clinically relevant model of normothermic cardioplegic arrest and cardiopulmonary bypass. Twenty anesthetized pigs, randomized to propofol treatment (n = 8) and control (n = 12) groups, were surgically prepared for cardiopulmonary bypass (CPB) and cardioplegic arrest. Doses of warm blood cardioplegia were delivered at 15-min intervals during a 60-min aortic cross-clamped period. Propofol was continuously infused for the duration of CPB and was therefore present in blood cardioplegia. Myocardial biopsies were collected before, at the end of cardioplegic arrest, and 20 mins after the release of the aortic cross-clamp. Hemodynamic parameters were monitored and blood samples collected for cardiac troponin I measurements. Propofol infusion during CPB and before ischemia did not alter cardiac function or myocardial metabolism. Propofol treatment attenuated the changes in myocardial tissue levels of adenine nucleotides, lactate, and amino acids during ischemia and reduced cardiac troponin I release on reperfusion. Propofol treatment reduced measurable hemodynamic dysfunction after cardioplegic arrest when compared to untreated controls. In conclusion, propofol protects the heart from ischemia-reperfusion injury in a clinically relevant experimental model. Propofol may therefore be a useful adjunct to cardioplegic solutions as well as being an appropriate anesthetic for cardiac surgery.  相似文献   

4.
Calpains are calcium‐dependent proteases and play critical roles in neuronal autophagy induced by inflammation. Propofol has been reported to exert anti‐inflammatory effects in neurons. We aimed to identify whether and how propofol‐modulated calpain activity and neuron autophagy in response to tumour necrosis factor‐α (TNF‐α). Mouse hippocampal neurons were pre‐treated with propofol and exposed to TNF‐α. Autophagy was evaluated by fluorescent autophagy assay and by measuring LC3I and LC3II expression. Intracellular calcium concentration was measured by fluorescent assay. Calpain activation was measured by calpain activity assay. The protein expression of intracellular signalling molecules was detected by Western blot analysis. Compared with untreated control neurons, 40 ng/mL TNF‐α treatment for 2 hours induced neuron autophagy, which was attenuated by 25 μmol/L propofol. TNF‐α induced intracellular calcium accumulation, the phosphorylation of calcium/calmodulin‐dependent protein kinase II (CAMK II) and calpain‐2, calpain activation and lysosomal cathepsin B release as well as tyrosine kinase receptor B (TrkB) truncation. These effects were alleviated by propofol, calcium chelator, CAMK II inhibitor, calpain‐2 inhibitor, calpain‐2 siRNA transfection and N‐Methyl‐d ‐aspartic acid (NMDA) receptor antagonist. Propofol, via NMDA receptor, inhibited TNF‐α‐mediated hippocampal neuron autophagy. The mechanism may involve calcium and calcium‐dependent signalling pathway, especially CAMK II and calpain‐2.  相似文献   

5.
BackgroundPropofol (2,6-diisopropylphenol) is frequently used as intravenous anesthetic agent, especially in its injectable form (Diprivan), to initiate and maintain sedative state during surgery or in intensive care units. Numerous studies have reported the antioxidant and anti-inflammatory effect of propofol. The oxidant enzyme myeloperoxidase (MPO), released from activated neutrophils, plays a key role in host defense. An increase of the circulating MPO concentration has been observed in patients admitted in intensive care unit and presenting a systemic inflammatory response related to septic shock or trauma.MethodsThis study investigates the immunomodulatory action of propofol and Diprivan as inhibitor of the oxidant activity of MPO. The understanding of the redox action mechanism of propofol and Diprivan on the myeloperoxidase chlorination and peroxidase activities has been refined using the combination of fluorescence and absorption spectroscopies with docking and cyclic voltammetry.ResultsPropofol acts as a reversible MPO inhibitor. The molecule interacts as a reducing substrate in the peroxidase cycle and promotes the accumulation of compound II. At acidic pH (5.5), propofol and Diprivan do not inhibit the chlorination activity, but their action increases at physiological pH (7.4). The main inhibitory action of Diprivan could be attributed to its HOCl scavenging property.General significancePropofol can act as a reversible MPO inhibitor at clinical concentrations. This property could, in addition to other previously proven anti-inflammatory actions, induce an immunomodulatory action, beneficial during clinical use, particularly in the treatment of systemic inflammation response syndrome.  相似文献   

6.
Propofol is a widely used anesthetic for both induction and maintenance of anesthesia during surgery. A strong feeling of hunger has been reported during the early recovery period after propofol anesthesia. We have investigated the effect of propofol on appetite in 10 patients undergoing a craniotomy and in parallel measured neuropeptide Y (NPY), catecholamines, and serotonin levels in the cerebrospinal fluid and plasma during anesthesia. Ten patients anesthetized with a volatile agent (isoflurane) served as a control group. Plasma NPY and catecholamines levels were not affected by surgery at any time. We observed a strong increase in NPY concentrations in the cerebrospinal fluid independently of the anesthetic technique agent used, whereas catecholamines were unchanged. We found that serotonin concentrations decreased significantly in the plasma (but not in the cerebrospinal fluid) of patients treated by propofol when compared with the control group; this decrease was associated with an increase of hunger early postoperatively. We concluded that the proappetite effect of propofol is mediated through a decrease of serotonin at the peripheral level.  相似文献   

7.
目的 研究七氟醚麻醉对宫颈癌患者围术期血清相关细胞因子的影响.方法 将组织学诊断为宫颈癌的患者90例,按手术时采用的麻醉药物的不同随机分为三组:第Ⅰ组患者为异丙酚组(Ⅰ组,n=30);第Ⅱ组患者为七氟醚组(Ⅱ组,n=30);第Ⅲ组患者为异丙酚+七氟醚组(Ⅲ组,n=30);观察麻醉前30 min,手术开始后1、2h,手术结束后1、24和48 h六个时点患者血清肿瘤坏死因子-α(TNF-α)、白细胞介素-8(IL-8)和白细胞介素-10(IL-10)水平的变化.结果 三组患者术后血清TNF-α、IL-8和IL-10水平与麻醉前值比较均升高(P<0.01),一般在术后24 h达峰值.比较血清TNF-α、IL-8和IL-10浓度变化,Ⅰ组和Ⅱ组之间差异无统计学意义,Ⅲ组抑制这三种细胞因子释放的能力明显强于Ⅰ组和Ⅱ组(P<0.05).结论 应用七氟醚或异丙酚进行麻醉维持在官颈癌手术中,两者控制炎性应激反应的作用类似;七氟醚联合异丙酚进行麻醉维持可更有效地降低术后炎性应激反应.  相似文献   

8.
The positive allosteric effects of four structurally distinct general anaesthetics (propofol, pentobarbitone, etomidate and 5alpha-pregnan-3alpha-ol-20-one [5alpha3alpha]) upon recombinant GABA(A) (alpha6beta3gamma2L), invertebrate GABA (RDL) and glycine (alpha1) receptors expressed in Xenopus laevis oocytes have been determined. Propofol and pentobarbitone enhanced agonist (GABA or glycine as appropriate) evoked currents at GABA(A), glycine, and RDL receptors, whereas etomidate and 5alpha3alpha were highly selective for the GABA(A) receptor. Utilizing site-directed mutagenesis, we demonstrate that the nature of the interaction of propofol, pentobarbitone and etomidate (but not 5alpha3alpha) with mammalian and invertebrate ionotropic GABA receptors depends critically upon the nature of a single amino acid located in the second transmembrane region (TM2) of these receptors. These data are discussed in relation to the specificity of action of general anaesthetics.  相似文献   

9.
10.
Interferons (IFNs) have anti‐viral and anti‐tumour effects. Type III interferon, as a member of the recently discovered interferon family, has been proved to inhibit tumour proliferation and promote the apoptosis of various tumour cells. However, whether type III IFN could inhibit the proliferation of lung cancer was not clear. In this study, we found that interferon λ (IFN λ) could inhibit the proliferation of A549 cells and induce autophagy and apoptosis of A549 cells. IFN λ could promote the expression of autophagy gene Beclin1 and interfere the expression of autophagy gene Beclin1 with small interfering RNA, thus inhibiting the effect of type III interferon on anti‐proliferation and promoting apoptosis of lung cancer cell. These results suggested that IFN λ could inhibit the proliferation of A549 cells by activating autophagy pathway, and IFN λ might be one of the potential therapeutic drugs for lung cancer.  相似文献   

11.
Whether the brain operates at a critical “tipping” point is a long standing scientific question, with evidence from both cellular and systems-scale studies suggesting that the brain does sit in, or near, a critical regime. Neuroimaging studies of humans in altered states of consciousness have prompted the suggestion that maintenance of critical dynamics is necessary for the emergence of consciousness and complex cognition, and that reduced or disorganized consciousness may be associated with deviations from criticality. Unfortunately, many of the cellular-level studies reporting signs of criticality were performed in non-conscious systems (in vitro neuronal cultures) or unconscious animals (e.g. anaesthetized rats). Here we attempted to address this knowledge gap by exploring critical brain dynamics in invasive ECoG recordings from multiple sessions with a single macaque as the animal transitioned from consciousness to unconsciousness under different anaesthetics (ketamine and propofol). We use a previously-validated test of criticality: avalanche dynamics to assess the differences in brain dynamics between normal consciousness and both drug-states. Propofol and ketamine were selected due to their differential effects on consciousness (ketamine, but not propofol, is known to induce an unusual state known as “dissociative anaesthesia”). Our analyses indicate that propofol dramatically restricted the size and duration of avalanches, while ketamine allowed for more awake-like dynamics to persist. In addition, propofol, but not ketamine, triggered a large reduction in the complexity of brain dynamics. All states, however, showed some signs of persistent criticality when testing for exponent relations and universal shape-collapse. Further, maintenance of critical brain dynamics may be important for regulation and control of conscious awareness.  相似文献   

12.
Objectives: Curative properties of medicinal plants such as Psidium guajava L. (Myrtaceae) have often been indicated by epidemiological studies on populations in which these fruits are consumed daily. However, complete characterization of the active principles responsible for this ability has never been performed. Here, we have characterized P. guajava’s anti‐cancer potential and identified the parts of the fruit involved in its anti‐neoplastic action. Materials and methods: We studied morphology of our cells, cell cycle characteristics and apoptosis and performed immunostaining, differentiation and western blot analyses. Results: We report that the P. guajava extract exerted anti‐cancer control on both haematological and solid neoplasias. P. guajava extract’s anti‐tumour properties were found to be tightly bound to induction of apoptosis and differentiation. Use of ex vivo myeloid leukaemia blasts corroborated that P. guajava was able to induce cell death but did not exhibit anti‐cancer effects on all malignant cells investigated, indicating selective activity against certain types of tumour. Analyses of P. guajava pulp, peel and seeds identified the pulp as being the most relevant component for causing cell cycle arrest and apoptosis, whereas peel was responsible for causing cell differentiation. P. guajava itself and its pulp‐derived extract were found to induce apoptosis accompanied by caspase activation and p16, p21, Fas ligand (FASL TNF super‐family, member 6), Bcl‐2‐associated agonist of cell death (BAD) and tumour necrosis factor receptor super‐family, member 10b (DR5), overexpression. Conclusions: Our findings showed that P. guajava L. extract was able to exert anti‐cancer activity on cultures in vitro and ex vivo, supporting the hypothesis of its anti malignant pro‐apoptotic modulation.  相似文献   

13.
Renal cell carcinoma (RCC) is currently one of the most treatment‐resistant malignancies and affects approximately three in 10,000 people. The impact of this disease produces about 31,000 new cases in the United States per year; and 12,000 people in the United States alone die from RCC annually. Although several treatment strategies have been investigated for RCC, this cancer continues to be a therapeutic challenge. For this reason, the aim of our study is to develop a more effective combinational therapy to treat advanced RCC. We examined the effect of vinorelbine on the signalling pathways of two human renal cancer cell lines (A498 and 786‐O) and also examined the in vivo effect of vinorelbine treatment alone and vinorelbine in combination with the anti‐VEGF antibody 2C3 on A498 and 786‐O tumour growth in nude mice. Tumour angiogenesis was measured by vWF staining, and apoptosis was determined by the TUNEL assay. We observed a significant tumour growth inhibition when using a combinational therapy of anti‐VEGF antibody 2C3 and vinorelbine in both A498 and 786‐O tumour‐bearing mice. The results suggest a breakthrough treatment for advanced RCC.  相似文献   

14.
Cancer is a multi‐faceted disease comprised of a combination of genetic, epigenetic, metabolic and signalling aberrations which severely disrupt the normal homoeostasis of cell growth and death. Rational developments of highly selective drugs which specifically block only one of the signalling pathways have been associated with limited therapeutic success. Multi‐targeted prevention of cancer has emerged as a new paradigm for effective anti‐cancer treatment. Platycodin D, a triterpenoid saponin, is one the major active components of the roots of Platycodon grandiflorum and possesses multiple biological and pharmacological properties including, anti‐nociceptive, anti‐atherosclerosis, antiviral, anti‐inflammatory, anti‐obesity, immunoregulatory, hepatoprotective and anti‐tumour activities. Recently, the anti‐cancer activity of platycodin D has been extensively studied. The purpose of this review was to give our perspectives on the current status of platycodin D and discuss its anti‐cancer activity and molecular mechanisms which may help the further design and conduct of pre‐clinical and clinical trials to develop it successfully into a potential lead drug for oncological therapy. Platycodin D has been shown to fight cancer by inducing apoptosis, cell cycle arrest, and autophagy and inhibiting angiogenesis, invasion and metastasis by targeting multiple signalling pathways which are frequently deregulated in cancers suggesting that this multi‐target activity rather than a single effect may play an important role in developing platycodin D into potential anti‐cancer drug.  相似文献   

15.
Cancers of various organs have been categorized into distinct subtypes after increasingly sophisticated taxonomies. Additionally, within a seemingly homogeneous subclass, individual cancers contain diverse tumour cell populations that vary in important cancer‐specific traits such as clonogenicity and invasive potential. Differences that exist between and within a given tumour type have hampered significantly both the proper selection of patients that might benefit from therapy, as well as the development of new targeted agents. In this review, we discuss the differences associated with organ‐specific cancer subtypes and the factors that contribute to intra‐tumour heterogeneity. It is of utmost importance to understand the biological causes that distinguish tumours as well as distinct tumour cell populations within malignancies, as these will ultimately point the way to more rational anti‐cancer treatments.EMBO reports advance online publication 12 July 2013; doi:10.1038/embor.2013.92  相似文献   

16.
Beneficial effects of metformin on cancer risk and mortality have been proved by epidemiological and clinical studies, thus attracting research interest in elucidating the underlying mechanisms. Recently, tumour‐associated macrophages (TAMs) appeared to be implicated in metformin‐induced antitumour activities. However, how metformin inhibits TAMs‐induced tumour progression remains ill‐defined. Here, we report that metformin‐induced antitumour and anti‐angiogenic activities were not or only partially contributed by its direct inhibition of functions of tumour and endothelial cells. By skewing TAM polarization from M2‐ to M1‐like phenotype, metformin inhibited both tumour growth and angiogenesis. Depletion of TAMs by clodronate liposomes eliminated M2‐TAMs‐induced angiogenic promotion, while also abrogating M1‐TAMs‐mediated anti‐angiogenesis, thus promoting angiogenesis in tumours from metformin treatment mice. Further in vitro experiments using TAMs‐conditioned medium and a coculture system were performed, which demonstrated an inhibitory effect of metformin on endothelial sprouting and tumour cell proliferation promoted by M2‐polarized RAW264.7 macrophages. Based on these results, metformin‐induced inhibition of tumour growth and angiogenesis is greatly contributed by skewing of TAMs polarization in microenvironment, thus offering therapeutic opportunities for metformin in cancer treatment.  相似文献   

17.
Propofol (2,6,di-isopropylphenol) was given by continuous intravenous infusion to provide sedation after cardiac surgery in 30 patients and its effects compared with those of midazolam given to a further 30 patients. Propofol infusion allowed rapid and accurate control of the level of sedation, which was satisfactory for longer than with midazolam. Patients given propofol recovered significantly more rapidly from their sedation once they had fulfilled the criteria for weaning from artificial ventilation and as a result spent a significantly shorter time attached to a ventilator. There were no serious complications in either group. Both medical and nursing staff considered the propofol infusion to be superior to midazolam in these patients. These findings suggest that propofol is a suitable replacement for etomidate and alphaxalone-alphadolone for sedating patients receiving intensive care.  相似文献   

18.
Background: Hydroxyethyl starch (HES) is one of the most used colloids for intravascular volume replacement during anesthesia. Aim: To investigate the existence of a chemical interaction between HES and the anesthetic propofol by in vitro propofol dosing, computational docking, and examination of a complex between propofol and HES by infrared (IR), ultraviolet (UV), and 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. Methods: Ten samples with human plasma mixed with HES or lactated Ringers (n?=?5 for each fluid) were prepared, and the propofol free fraction was quantified until 50?min, using gas chromatography-mass spectrometry. The docking study was performed between HES and propofol and compared with controls. The binding affinities between HES and the small molecules were evaluated by binding free energy approximation (ΔGb, kJ?mol?1). The IR, UV, and NMR spectra were measured for propofol, HES, and a mixture of both obtained by the kneading method. Results: Propofol concentrations were significantly lower in the HES samples than in the LR samples (p?=?.021). The spectroscopic characterization of propofol combined with HES revealed differences in spectra and docking studies reinforced a potential interaction between propofol and HES. Conclusions: Propofol and HES form a complex with different physical-bio-chemical behavior than the single drugs, which may be an important drug interaction. Further studies should evaluate its clinical effects.  相似文献   

19.
Tumour repopulation is recognized as a crucial event in tumour relapse where therapy‐sensitive dying cancer cells influence the tumour microenvironment to sustain therapy‐resistant cancer cell growth. Recent studies highlight the role of the oncometabolites succinate, fumarate, and 2‐hydroxyglutarate in the aggressiveness of cancer cells and in the worsening of the patient's clinical outcome. These oncometabolites can be produced and secreted by cancer and/or surrounding cells, modifying the tumour microenvironment and sustaining an invasive neoplastic phenotype. In this review, we report recent findings concerning the role in cancer development of succinate, fumarate, and 2‐hydroxyglutarate and the regulation of their related enzymes succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase. We propose that oncometabolites are crucially involved in tumour repopulation. The study of the mechanisms underlying the relationship between oncometabolites and tumour repopulation is fundamental for identifying efficient anti‐cancer therapeutic strategies and novel serum biomarkers in order to overcome cancer relapse.  相似文献   

20.
The successful long‐term use of taxane for cancer therapy is often prevented by the development of drug resistance in clinic. Thus, exploring the mechanisms involved is a first step towards rational strategies to overcome taxane resistance. Taxane resistance‐related microRNA (miRNAs) are under investigation and miRNAs could induce the taxane resistance of tumour cells by regulating cell cycle distribution, survival and/or apoptosis pathways, drug transports, epithelial–mesenchymal transition and cancer stem cell. This article summarizes current research involving miRNAs as regulators of key target genes for tanxanxe chemoresistance and discusses the complex regulatory networks of miRNAs. Also, the authors will envisage future developments towards the potential use of targeting miRNAs as a novel strategy for improving response of tumour patients to taxane. miRNAs play critical roles in taxane chemoresistance and the miRNA‐based therapies will be helpful for overcoming drug resistance and developing more effective personalized anti‐cancer treatment strategies. Further research studies should be performed to promote therapeutic–clinical use of taxane resistance‐related miRNAs in cancer patients, especially in those patients with taxane‐resistant cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号