首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
A transient expression system based on a deleted version of Cowpea mosaic virus (CPMV) RNA‐2, termed CPMV‐HT, in which the sequence to be expressed is positioned between a modified 5′ UTR and the 3′ UTR has been successfully used for the plant‐based expression of a wide range of proteins, including heteromultimeric complexes. While previous work has demonstrated that alterations to the sequence of the 5′ UTR can dramatically influence expression levels, the role of the 3′ UTR in enhancing expression has not been determined. In this work, we have examined the effect of different mutations in the 3′UTR of CPMV RNA‐2 on expression levels using the reporter protein GFP encoded by the expression vector, pEAQexpress‐HT‐GFP. The results showed that the presence of a 3′ UTR in the CPMV‐HT system is important for achieving maximal expression levels. Removal of the entire 3′ UTR reduced expression to approximately 30% of that obtained in its presence. It was found that the Y‐shaped secondary structure formed by nucleotides 125–165 of the 3′ UTR plays a key role in its function; mutations that disrupt this Y‐shaped structure have an effect equivalent to the deletion of the entire 3′ UTR. Our results suggest that the Y‐shaped secondary structure acts by enhancing mRNA accumulation rather than by having a direct effect on RNA translation. The work described in this paper shows that the 5′ and 3′ UTRs in CPMV‐HT act orthogonally and that mutations introduced into them allow fine modulation of protein expression levels.  相似文献   

3.
The promoter and 5′‐untranslated region (5′UTR) play a key role in determining the efficiency of recombinant protein expression in plants. Comparative experiments are used to identify suitable elements but these are usually tested in transgenic plants or in transformed protoplasts/suspension cells, so their relevance in whole‐plant transient expression systems is unclear given the greater heterogeneity in expression levels among different leaves. Furthermore, little is known about the impact of promoter/5′UTR interactions on protein accumulation. We therefore established a predictive model using a design of experiments (DoE) approach to compare the strong double‐enhanced Cauliflower mosaic virus 35S promoter (CaMV 35SS) and the weaker Agrobacterium tumefaciens Ti‐plasmid nos promoter in whole tobacco plants transiently expressing the fluorescent marker protein DsRed. The promoters were combined with one of three 5′UTRs (one of which was tested with and without an additional protein targeting motif) and the accumulation of DsRed was measured following different post‐agroinfiltration incubation periods in all leaves and at different leaf positions. The model predictions were quantitative, allowing the rapid identification of promoter/5′UTR combinations stimulating the highest and quickest accumulation of the marker protein in all leaves. The model also suggested that increasing the incubation time from 5 to 8 days would reduce batch‐to‐batch variability in protein yields. We used the model to identify promoter/5′UTR pairs that resulted in the least spatiotemporal variation in expression levels. These ideal pairs are suitable for the simultaneous, balanced production of several proteins in whole plants by transient expression. Biotechnol. Bioeng. 2013; 110: 471–482. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
5.
6.
Wang  Ling  Tan  Xungang  Zou  Congcong  Wang  Lijuan  Wu  Zhihao  Zou  Yuxia  Song  Zongcheng  You  Feng 《Molecular biology reports》2021,48(4):3529-3540

Dynein axonemal light intermediate chain 1 (dnali1) is an important part of axonemal dyneins and plays an important role in the growth and development of animals. However, there is little information about dnali1 in fish. Herein, we cloned dnali1 gene from the genome of olive flounder (Paralichthys olivaceus), a commercially important maricultured fish in China, Japan, and Korea, and analyzed its expression patterns in different gender fish. The flounder dnali1 DNA sequence contained a 771 bp open reading frame (ORF), two different sizes of 5′ untranslated region (5′UTR), and a 1499 bp 3′ untranslated region (3′UTR). Two duplicated 922 nt fragments were found in dnali1 mRNA. The first fragment contained the downstream coding region and the front portion of 3′UTR, and the second fragment was entirely located in 3′UTR. Multiple alignments indicated that the flounder Dnali1 protein contained the putative conserved coiled-coil domain. Its expression showed sexually dimorphic with predominant expression in the flounder testis, and lower expression in other tissues. The gene with the longer 5′UTR was specifically expressed in the testis. The highest expression level in the testis was detected at stages IV and V. Transient expression analysis showed that the 922 bp repeated sequence 3′UTR of dnali1 down-regulated the expression of GFP at the early stage in zebrafish. The flounder dnali1 might play an important role in the testis, especially in the period of spermatogenesis, and the 5′UTR and the repetitive sequences in 3′UTR might contain some regulatory elements for the cilia.

  相似文献   

7.
8.
9.
10.
Activin is a potent mesoderm inducing factor present in embryos of Xenopus laevis. Recent evidence has implicated activin in the inhibition of neural development in addition to the well-established induction of mesoderm in ectodermal explants. These diverse effects are critically dependent on the concentration of activin yet little is known about the mechanisms regulating the level of activin in the embryo. We report that the 3′ untranslated region (3′ UTR) of activin βB mRNA inhibits the translation of activin in embryos. Microinjection of activin mRNA from which the 3′ UTR has been deleted is 8–10-fold more potent in inducing mesoderm than mRNA containing the 3′ UTR. Truncation of the 3′ UTR also leads to a marked enhancement of activin protein levels in embryos but has no effect when the truncated mRNA is translated in vitro. The 3′ UTR also confers translational inhibition on a heterologous mRNA. These data show that a maternal factor(s) present in X. laevis regulates the translation of injected activin βB mRNA. This factor(s) could be responsible for regulating the levels of endogenous activin βB protein during mesoderm induction and the specification of ectodermal derivatives such as neural and epidermal tissues. © 1995 Wiley-Liss, Inc.  相似文献   

11.
12.
13.
cDNA encoding the bound type trehalase of the European honeybee was cloned. The cDNA (3,001 bp) contained the long 5′ untranslated region (UTR) of 869 bp, and the 3′ UTR of 251 bp including a poly(A) tail, and the open reading frame of 1,881 bp consisting of 626 amino acid residues. The M r of the mature enzyme comprised of 591 amino acids, excluded a signal sequence of 35 amino acid residues, was 69,177. Six peptide sequences analyzed were all found in the deduced amino acid sequence. The amino acid sequence exhibited high identity with trehalases belonging to glycoside hydrolase family 37. A putative transmembrane region similar to trehalase-2 of the silkworm was found in the C-terminal amino acid sequence. Recombinant enzyme of the trehalase was expressed in the methylotrophic yeast Pichia pastoris as host, and displayed properties identical to those of the native enzyme except for higher sugar chain contents. This is the first report of heterologous expression of insect trehalase.  相似文献   

14.
Chloroplast mRNA translation is regulated by the 5′‐untranslated region (5′‐UTR). Chloroplast 5′‐UTRs also support translation of the coding regions of heterologous genes. Using an in vitro translation system from tobacco chloroplasts, we detected no translation from a human immunodeficiency virus tat coding region fused directly to the tobacco chloroplast psbA 5′‐UTR. This lack of apparent translation could have been due to rapid degradation of mRNA templates or synthesized protein products. Replacing the psbA 5′‐UTR with the E. coli phage T7 gene 10 5′‐UTR, a highly active 5′‐UTR, and substituting synonymous codons led to some translation of the tat coding region. The Tat protein thus synthesized was stable during translation reactions. No significant degradation of the added tat mRNAs was observed after translation reactions. These results excluded the above two possibilities and confirmed that the tat coding region prevented its own translation. The tat coding region was then fused to the psbA 5′‐UTR with a cognate 5′‐coding segment. Significant translation was detected from the tat coding region when fused after 10 or more codons. That is, translation could be initiated from the tat coding region once translation had started, indicating that the tat coding region inhibits translational initiation but not elongation. Hence, cooperation/compatibility between the 5′‐UTR and its coding region is important for translational initiation.  相似文献   

15.
16.
Chinese hamster ovary (CHO) cells are used for recombinant protein production in the pharmaceutical industry but there is a need to improve expression levels. In the present work experiments were carried out to test the effectiveness of different 3′untranslated regions (3′UTRs) in promoting production of a naturally secreted luciferase. Seamless cloning was used to produce expression vectors in which Gaussia princeps luciferase coding sequences were linked to the human albumin, immunoglobulin or chymotrypsinogen 3′UTR. Stably transfected CHO cells expressing these constructs were selected. Luciferase activity in the culture medium was increased 2–3‐fold by replacing the endogenous 3′UTR with the albumin 3′UTR and decreased by replacement with immunoglobulin or chymotrypsinogen 3′UTR. Replacement of the native 3′UTR with the albumin 3′UTR led to a 10‐fold increase in luciferase mRNA levels. Deletion analysis of the albumin 3′UTR showed that loss of nucleotides 1–50, which removed an AU‐rich complex stem loop region, caused significant reductions in both luciferase protein expression and luciferase mRNA levels. The results suggest that recombinant protein expression and yield could be improved by the careful selection of appropriate 3′UTR sequences.  相似文献   

17.
过氧化物酶体增殖物激活受体γ (peroxisome proliferator-activated receptor gamma, PPARγ)是脂肪生成的关键调控因子。本实验室前期研究发现,与人和鼠等哺乳动物PPARγ基因的转录本不同,鸡PPARγ基因的多个转录本5′UTR区存在上游开放阅读框(upstream open reading frames, uORFs)。为了揭示该uORF转录后的调控作用,本研究构建了鸡PPARγ基因转录本3 (cPPARγ3)野生型5′UTR报告基因载体psiCHECK2-cPPARγ3- 5′UTR-WT和uORF突变(uATG突变为终止密码子TGA)的5′UTR报告基因载体psiCHECK2-cPPARγ3- 5′UTR-Mut。将这两个报告基因载体分别转染永生化鸡前脂肪细胞(immortalized chicken pre-adipocytes, ICPA)和鸡胚成纤维细胞DF1,检测海肾荧光素酶报告基因hRluc活性及其mRNA表达。荧光素酶报告基因检测结果显示,在ICPA细胞中,psiCHECK2-cPPARγ3-5′UTR-Mut的hRluc报告基因活性极显著高于psiCHECK2- cPPARγ3-5′UTR-WT (P<0.01);在DF1细胞中,psiCHECK2-cPPARγ3-5′UTR-Mut的hRluc报告基因活性高于psiCHECK2-cPPARγ3-5′UTR-WT,但差异不显著(P>0.05)。qRT-PCR检测hRluc基因mRNA表达结果显示,与psiCHECK2-cPPARγ3-5′UTR-WT相比,在ICPA细胞中,psiCHECK2-cPPARγ3-5′UTR-Mut转染细胞的hRluc基因的mRNA表达水平极显著降低(P<0.01);在DF1细胞中,psiCHECK2-cPPARγ3-5′UTR-Mut转染细胞后,hRluc基因的mRNA表达水平也降低,但差异不显著(P>0.05)。为进一步分析该uORF对鸡cPPARγ3的转录后调控作用,本研究又分别构建了野生型cPPARγ3真核表达载体pcDNA3.1-cPPARγ3-WT和uORF突变的cPPARγ3真核表达载体pcDNA3.1-cPPARγ3-Mut。qRT-PCR检测cPPARγ3的mRNA表达水平,结果显示,在这两种细胞中,pcDNA3.1-cPPARγ3-Mut转染细胞的cPPARγ3 mRNA表达水平均显著低于pcDNA3.1-cPPARγ3-WT转染细胞(P<0.05),但Western blot结果显示,pcDNA3.1-cPPARγ3-Mut转染细胞的PPARγ蛋白表达水平极显著高于pcDNA3.1-cPPARγ3-WT转染细胞(P<0.01)。这些研究结果表明,5′UTR区的uORF抑制鸡cPPARγ3的翻译。  相似文献   

18.
19.
20.
MicroRNAs (miRNAs) in the AGO-containing RISC complex control messenger RNA (mRNA) translation by binding to mRNA 3′ untranslated region (3′UTR). The relationship between miRNAs and other regulatory factors that also bind to mRNA 3′UTR, such as CPEB1 (cytoplasmic polyadenylation element-binding protein), remains elusive. We found that both CPEB1 and miR-15b control the expression of WEE1, a key mammalian cell cycle regulator. Together, they repress WEE1 protein expression during G1 and S-phase. Interestingly, the 2 factors lose their inhibitory activity at the G2/M transition, at the time of the cell cycle when WEE1 expression is maximal, and, moreover, rather activate WEE1 translation in a synergistic manner. Our data show that translational regulation by RISC and CPEB1 is essential in cell cycle control and, most importantly, is coordinated, and can be switched from inhibition to activation during the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号