首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We have recently reported that a ~19‐kDa polypeptide, rPK‐4, is a protein kinase Cs inhibitor that is 89% homologous to the 1171–1323 amino acid region of the 228‐kDa human pericentriolar material‐1 (PCM‐1) protein (Chakravarthy et al. 2012). We have now discovered that rPK‐4 binds oligomeric amyloid‐β peptide (Aβ)1‐42 with high affinity. Most importantly, a PCM‐1‐selective antibody co‐precipitated Aβ and amyloid β precursor protein (AβPP) from cerebral cortices and hippocampi from AD (Alzheimer's disease) transgenic mice that produce human AβPP and Aβ1‐42, suggesting that PCM‐1 may interact with amyloid precursor protein/Aβ in vivo. We have identified rPK‐4′s Aβ‐binding domain using a set of overlapping synthetic peptides. We have found with ELISA, dot‐blot, and polyacrylamide gel electrophoresis techniques that a ~ 5 kDa synthetic peptide, amyloid binding peptide (ABP)‐p4‐5 binds Aβ1‐42 at nM levels. Most importantly, ABP‐p4‐5, like rPK‐4, appears to preferentially bind Aβ1‐42 oligomers, believed to be the toxic AD‐drivers. As expected from these observations, ABP‐p4‐5 prevented Aβ1‐42 from killing human SH‐SY5Y neuroblastoma cells via apoptosis. These findings indicate that ABP‐p4‐5 is a possible candidate therapeutic for AD.  相似文献   

4.
The present study was designed to investigate the role of β‐amyloid (Aβ1‐42) in inducing neuronal pyroptosis and its mechanism. Mice cortical neurons (MCNs) were used in this study, LPS + Nigericin was used to induce pyroptosis in MCNs (positive control group), and Aβ1‐42 was used to interfere with MCNs. In addition, propidium iodide (PI) staining was used to examine cell permeability, lactate dehydrogenase (LDH) release assay was employed to detect cytotoxicity, immunofluorescence (IF) staining was used to investigate the expression level of the key protein GSDMD, Western blot was performed to detect the expression levels of key proteins, and enzyme‐linked immunosorbent assay (ELISA) was utilized to determine the expression levels of inflammatory factors in culture medium, including IL‐1β, IL‐18 and TNF‐α. Small interfering RNA (siRNA) was used to silence the mRNA expression of caspase‐1 and GSDMD, and Aβ1‐42 was used to induce pyroptosis, followed by investigation of the role of caspase‐1‐mediated GSDMD cleavage in pyroptosis. In addition, necrosulfonamide (NSA), an inhibitor of GSDMD oligomerization, was used for pre‐treatment, and Aβ1‐42 was subsequently used to observe the pyroptosis in MCNs. Finally, AAV9‐siRNA‐caspase‐1 was injected into the tail vein of APP/PS1 double transgenic mice (Alzheimer's disease mice) for caspase‐1 mRNA inhibition, followed by observation of behavioural changes in mice and measurement of the expression of inflammatory factors and pyroptosis‐related protein. As results, Aβ1‐42 could induce pyroptosis in MCNs, increase cell permeability and enhance LDH release, which were similar to the LPS + Nigericin‐induced pyroptosis. Meanwhile, the expression levels of cellular GSDMD and p30‐GSDMD were up‐regulated, the levels of NLRP3 inflammasome and GSDMD‐cleaved protein caspase‐1 were up‐regulated, and the levels of inflammatory factors in the medium were also up‐regulated. siRNA intervention in caspase‐1 or GSDMD inhibited Aβ1‐42‐induced pyroptosis, and NSA pre‐treatment also caused the similar inhibitory effects. The behavioural ability of Alzheimer's disease (AD) mice was relieved after the injection of AAV9‐siRNA‐caspase‐1, and the expression of pyroptosis‐related protein in the cortex and hippocampus was down‐regulated. In conclusion, Aβ1‐42 could induce pyroptosis by GSDMD protein, and NLRP3‐caspase‐1 signalling was an important signal to mediate GSDMD cleavage, which plays an important role in Aβ1‐42‐induced pyroptosis in neurons. Therefore, GSDMD is expected to be a novel therapeutic target for AD.  相似文献   

5.
Alzheimer's disease (AD) is the most common form of dementia and is characterized by the presence of senile plaques and neurofibrillary tangles, along with synaptic loss. The underlying mechanisms of AD are not clarified yet, but oxidative stress and mitochondrial dysfunction are important factors. Overactivation of poly(adenosine diphosphate ribose) polymerase‐1 (PARP‐1) enzyme has been known to cause neuroinflammation and cell death in neurodegenerative processes. The aim of the present study was to investigate the protective effects of the PARP‐1 inhibitors, 3‐aminobenzamide (3‐AB) and nicotinamide (NA), against amyloid β peptide (1–42) (Aβ(1–42))‐induced oxidative damage and mitochondrial reduction capacity on isolated synaptosomes. Rats were injected intraperitoneally with 3‐AB (30–100 mg kg?1), NA (100–500 mg kg?1) or with saline for 7 days. Synaptosomes were incubated with 10–30 μM Aβ(1–42) or saline for 6 h at 37 °C. Ex vivo Aβ(1–42) treatment significantly induced oxidative stress and mitochondrial dysfunction in synaptosomes of the saline group, while synaptosomes of 3‐AB and NA groups showed significant decreases in lipid peroxidation, reactive oxygen species production and protein oxidation. Moreover, both NA and 3‐AB were able to improve the mitochondrial reduction capacity against Aβ(1–42). These data suggest that NA and 3‐AB may have protective effects in neurodegenerative processes because of the reduced levels of oxidative stress and the improvement of mitochondrial function. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
We investigated the neuropharmacological effects of the methanolic extract from Lactuca capensis Thunb. leaves (100 and 200 mg/kg) for 21 days on memory impairment in an Alzheimer's disease (AD) rat model produced by direct intraventricular delivery of amyloid‐β1‐42 (Aβ1‐42). Behavioural assays such as Y‐maze and radial arm maze test were used for assessing memory performance. Aβ1‐42 decreased cognitive performance in the behavioural tests which were ameliorated by pre‐treatment with the methanolic extract. Acetylcholinesterase activity and oxidant–antioxidant balance in the rat hippocampus were abnormally altered by Aβ1‐42 treatment while these deficits were recovered by pre‐treatment with the methanolic extract. In addition, rats were given Aβ1‐42 exhibited in the hippocampus decreased brain‐derived neurotrophic factor (BDNF) mRNA copy number and increased IL‐1β mRNA copy number which was reversed by the methanolic extract administration. These findings suggest that the methanolic extract could be a potent neuropharmacological agent against dementia via modulating cholinergic activity, increasing of BDNF levels and promoting antioxidant action in the rat hippocampus.  相似文献   

7.
The blood–brain barrier (BBB) is composed of brain capillary endothelial cells and has an important role in maintaining homeostasis of the brain separating the blood from the parenchyma of the central nervous system (CNS). It is widely known that disruption of the BBB occurs in various neurodegenerative diseases, including Alzheimer's disease (AD). Annexin A1 (ANXA1), an anti‐inflammatory messenger, is expressed in brain endothelial cells and regulates the BBB integrity. However, its role and mechanism for protecting BBB in AD have not been identified. We found that β‐Amyloid 1‐42 (Aβ42)‐induced BBB disruption was rescued by human recombinant ANXA1 (hrANXA1) in the murine brain endothelial cell line bEnd.3. Also, ANXA1 was decreased in the bEnd.3 cells, the capillaries of 5XFAD mice, and the human serum of patients with AD. To find out the mechanism by which ANXA1 recovers the BBB integrity in AD, the RhoA‐ROCK signaling pathway was examined in both Aβ42‐treated bEnd.3 cells and the capillaries of 5XFAD mice as RhoA was activated in both cases. RhoA inhibitors alleviated Aβ42‐induced BBB disruption and constitutively overexpressed RhoA‐GTP (active form of RhoA) attenuated the protective effect of ANXA1. When pericytes were cocultured with bEnd.3 cells, Aβ42‐induced RhoA activation of bEnd.3 cells was inhibited by the secretion of ANXA1 from pericytes. Taken together, our results suggest that ANXA1 restores Aβ42‐induced BBB disruption through inhibition of RhoA‐ROCK signaling pathway and we propose ANXA1 as a therapeutic reagent, protecting against the breakdown of the BBB in AD.  相似文献   

8.
Sortilin, a Golgi sorting protein and a member of the VPS10P family, is the co‐receptor for proneurotrophins, regulates protein trafficking, targets proteins to lysosomes, and regulates low density lipoprotein metabolism. The aim of this study was to investigate the expression and regulation of sortilin in Alzheimer's disease (AD). A significantly increased level of sortilin was found in human AD brain and in the brains of 6‐month‐old swedish‐amyloid precursor protein/PS1dE9 transgenic mice. Aβ42 enhanced the protein and mRNA expression levels of sortilin in a dose‐ and time‐dependent manner in SH‐SY5Y cells, but had no effect on sorLA. In addition, proBDNF also significantly increased the protein and mRNA expression of sortilin in these cells. The recombinant extracellular domain of p75NTR (P75ECD‐FC), or the antibody against the extracellular domain of p75NTR, blocked the up‐regulation of sortilin induced by Amyloid‐β protein (Aβ), suggesting that Aβ42 increased the expression level of sortilin and mRNA in SH‐SY5Y via the p75NTR receptor. Inhibition of ROCK, but not Jun N‐terminal kinase, suppressed constitutive and Aβ42‐induced expression of sortilin. In conclusion, this study shows that sortilin expression is increased in the AD brain in human and mice and that Aβ42 oligomer increases sortilin gene and protein expression through p75NTR and RhoA signaling pathways, suggesting a potential physiological interaction of Aβ42 and sortilin in Alzheimer's disease.

  相似文献   


9.
Neurons frequently encounter neurodegenerative signals first in their periphery. For example, exposure of axons to oligomeric Aβ1‐42 is sufficient to induce changes in the neuronal cell body that ultimately lead to degeneration. Currently, it is unclear how the information about the neurodegenerative insult is transmitted to the soma. Here, we find that the translation of pre‐localized but normally silenced sentinel mRNAs in axons is induced within minutes of Aβ1–42 addition in a Ca2+‐dependent manner. This immediate protein synthesis following Aβ1–42 exposure generates a retrograde signaling complex including vimentin. Inhibition of the immediate protein synthesis, knock‐down of axonal vimentin synthesis, or inhibition of dynein‐dependent transport to the soma prevented the normal cell body response to Aβ1–42. These results establish that CNS axons react to neurodegenerative insults via the local translation of sentinel mRNAs encoding components of a retrograde signaling complex that transmit the information about the event to the neuronal soma.  相似文献   

10.
MicroRNAs play a pivotal role in rapid, dynamic, and spatiotemporal modulation of synaptic functions. Among them, recent emerging evidence highlights that microRNA‐181a (miR‐181a) is particularly abundant in hippocampal neurons and controls the expression of key plasticity‐related proteins at synapses. We have previously demonstrated that miR‐181a was upregulated in the hippocampus of a mouse model of Alzheimer's disease (AD) and correlated with reduced levels of plasticity‐related proteins. Here, we further investigated the underlying mechanisms by which miR‐181a negatively modulated synaptic plasticity and memory. In primary hippocampal cultures, we found that an activity‐dependent upregulation of the microRNA‐regulating protein, translin, correlated with reduction of miR‐181a upon chemical long‐term potentiation (cLTP), which induced upregulation of GluA2, a predicted target for miR‐181a, and other plasticity‐related proteins. Additionally, Aβ treatment inhibited cLTP‐dependent induction of translin and subsequent reduction of miR‐181a, and cotreatment with miR‐181a antagomir effectively reversed the effects elicited by Aβ but did not rescue translin levels, suggesting that the activity‐dependent upregulation of translin was upstream of miR‐181a. In mice, a learning episode markedly decreased miR‐181a in the hippocampus and raised the protein levels of GluA2. Lastly, we observed that inhibition of miR‐181a alleviated memory deficits and increased GluA2 and GluA1 levels, without restoring translin, in the 3xTg‐AD model. Taken together, our results indicate that miR‐181a is a major negative regulator of the cellular events that underlie synaptic plasticity and memory through AMPA receptors, and importantly, Aβ disrupts this process by suppressing translin and leads to synaptic dysfunction and memory impairments in AD.  相似文献   

11.
Alzheimer's disease (AD) is one of the most common causes of neurodegenerative diseases in the elderly. The accumulation of amyloid‐β (Aβ) peptides is one of the pathological hallmarks of AD and leads to the impairments of synaptic plasticity and cognitive function. The transient receptor potential vanilloid 1 (TRPV1), a nonselective cation channel, is involved in synaptic plasticity and memory. However, the role of TRPV1 in AD pathogenesis remains largely elusive. Here, we reported that the expression of TRPV1 was decreased in the brain of APP23/PS45 double transgenic AD model mice. Genetic upregulation of TRPV1 by adeno‐associated virus (AAV) inhibited the APP processing and Aβ deposition in AD model mice. Meanwhile, upregulation of TRPV1 ameliorated the deficits of hippocampal CA1 long‐term potentiation (LTP) and spatial learning and memory through inhibiting GluA2‐containing α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPAR) endocytosis. Furthermore, pharmacological activation of TRPV1 by capsaicin (1 mg/kg, i.p.), an agonist of TRPV1, dramatically reversed the impairments of hippocampal CA1 LTP and spatial learning and memory in AD model mice. Taken together, these results indicate that TRPV1 activation effectively ameliorates cognitive and synaptic functions through inhibiting AMPAR endocytosis in AD model mice and could be a novel molecule for AD treatment.  相似文献   

12.
Mitochondria are physically and biochemically in contact with other organelles including the endoplasmic reticulum (ER). Such contacts are formed between mitochondria‐associated ER membranes (MAM), specialized subregions of ER, and the outer mitochondrial membrane (OMM). We have previously shown increased expression of MAM‐associated proteins and enhanced ER to mitochondria Ca2+ transfer from ER to mitochondria in Alzheimer's disease (AD) and amyloid β‐peptide (Aβ)‐related neuronal models. Here, we report that siRNA knockdown of mitofusin‐2 (Mfn2), a protein that is involved in the tethering of ER and mitochondria, leads to increased contact between the two organelles. Cells depleted in Mfn2 showed increased Ca2+ transfer from ER to mitchondria and longer stretches of ER forming contacts with OMM. Interestingly, increased contact resulted in decreased concentrations of intra‐ and extracellular Aβ40 and Aβ42. Analysis of γ‐secretase protein expression, maturation and activity revealed that the low Aβ concentrations were a result of impaired γ‐secretase complex function. Amyloid‐β precursor protein (APP), β‐site APP‐cleaving enzyme 1 and neprilysin expression as well as neprilysin activity were not affected by Mfn2 siRNA treatment. In summary, our data shows that modulation of ER–mitochondria contact affects γ‐secretase activity and Aβ generation. Increased ER–mitochondria contact results in lower γ‐secretase activity suggesting a new mechanism by which Aβ generation can be controlled.  相似文献   

13.
14.
High‐throughput screens that dispense with the need for expensive synthetic Aβ peptide would be invaluable for identifying novel anti‐aggregants as potential treatments for Alzheimer's disease. A biosynthetic in vivo approach, using a recombinant fluorescent green fluorescent protein (GFP) reporter for the aggregation state of Aβ in Escherichia coli, has been reported by other workers. Here, inducible Aβ–GFP expression in E. coli was coupled to the concurrent constitutive production of a quasi‐random peptide library to screen for anti‐aggregant activity. To attempt to introduce greater robustness, mCherry was also co‐expressed as an internal fluorescence standard to allow ratiometric comparison between samples. However, fluctuations in mCherry expression levels, as well as a low dynamic range of GFP output between positive and negative anti‐aggregant peptides, highlighted limitations with the approach. Despite this, two novel peptides were identified that showed an equivalent in vitro anti‐aggregant activity to that of epigallocatechin‐3‐gallate. Thus, although biosynthetic in vivo strategies show promise as screens for novel activities, unforeseen problems can arise because of the variability inherent in any biological system. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Short synthetic peptides homologous to the central region of Aβ but bearing proline residues as β‐sheet blockers have been shown in vitro to bind to Aβ with high affinity, partially inhibit Aβ fibrillogenesis, and redissolve preformed fibrils. While short peptides have been used extensively as therapeutic drugs in medicine, two important problems associated with their use in central nervous system diseases have to be addressed: (a) rapid proteolytic degradation in plasma, and (b) poor blood–brain barrier (BBB) permeability. Recently, we have demonstrated that the covalent modification of proteins with the naturally occurring polyamines significantly increases their permeability at the BBB. We have extended this technology to iAβ11, an 11‐residue β‐sheet breaker peptide that inhibits Aβ fibrillogenesis, by covalently modifying this peptide with the polyamine, putrescine (PUT), and evaluating its plasma pharmacokinetics and BBB permeability. After a single intravenous bolus injection in rats, both 125I‐YiAβ11 and 125I‐PUT‐YiAβ11 showed rapid degradation in plasma as determined by trichloroacetic acid (TCA) precipitation and paper chromatography. By switching to the all d ‐enantiomers of YiAβ11 and PUT‐YiAβ11, significant protection from degradation by proteases in rat plasma was obtained with only 1.9% and 5.7% degradation at 15 min after intravenous bolus injection, respectively. The permeability coefficient × surface area product at the BBB was five‐ sevenfold higher in the cortex and hippocampus for the 125I‐PUT‐d ‐YiAβ11 compared to the 125I‐d ‐YiAβ11, with no significant difference in the residual plasma volume. In vitro assays showed that PUT‐d ‐YiAβ11 retains its ability to partially inhibit Aβ fibrillogenesis and dissolve preformed amyloid fibrils. Because of its five‐ to sevenfold increase in permeability at the BBB and its resistance to proteolysis in the plasma, this polyamine‐modified β‐sheet breaker peptide may prove to be an effective inhibitor of amyloidogenesis in vivo and, hence, an important therapy for Alzheimer's disease. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 371–382, 1999  相似文献   

16.
The breakdown of the blood–brain barrier, which develops early in Alzheimer''s disease (AD), contributes to cognitive impairment. Exercise not only reduces the risk factors for AD but also confers direct protection against cognitive decline. However, the exact molecular mechanisms remain elusive, particularly whether exercise can liberate the function of the blood–brain barrier. Here, we demonstrate that long‐term exercise promotes the clearance of brain amyloid‐β by improving the function of the blood–brain barrier in 5XFAD mice. Significantly, treating primary brain pericytes or endothelial cells with exosomes isolated from the brain of exercised 5XFAD mice improves cell proliferation and upregulates PDGFRβ, ZO‐1, and claudin‐5. Moreover, exosomes isolated from exercised mice exhibit significant changes in miR‐532‐5p. Administration or transfection of miR‐532‐5p to sedentary mice or primary brain pericytes and endothelial cells reproduces the improvement of blood–brain barrier function. Exosomal miR‐532‐5p targets EPHA4, and accordingly, expression of EphA4 is decreased in exercised mice and miR‐532‐5p overexpressed mice. A specific siRNA targeting EPHA4 recapitulates the effects on blood–brain barrier‐associated cells observed in exercised 5XFAD mice. Overall, our findings suggest that exosomes released by the brain contain a specific miRNA that is altered by exercise and has an impact on blood–brain barrier function in AD.  相似文献   

17.
Accumulating evidence indicates that abnormal deposition of amyloid‐β (Aβ) peptide in the brain is responsible for endothelial cell damage and consequently leads to blood–brain barrier (BBB) leakage. However, the mechanisms underlying BBB disruption are not well described. We employed an monolayer BBB model comprising bEnd.3 cell and found that BBB leakage was induced by treatment with Aβ1–42, and the levels of tight junction (TJ) scaffold proteins (ZO‐1, Claudin‐5, and Occludin) were decreased. Through comparisons of the effects of the different components of Aβ1–42, including monomer (Aβ1–42‐Mono), oligomer (Aβ1–42‐Oligo), and fibril (Aβ1–42‐Fibril), our data confirmed that Aβ1–42‐Oligo is likely to be the most important damage factor that results in TJ damage and BBB leakage in Alzheimer's disease. We found that the incubation of bEnd.3 cells with Aβ1–42 significantly up‐regulated the level of receptor for advanced glycation end‐products (RAGE). Co‐incubation of a polyclonal antibody to RAGE and Aβ1–42‐Oligo in bEnd.3 cells blocked RAGE suppression of Aβ1–42‐Oligo‐induced alterations in TJ scaffold proteins and reversed Aβ1–42‐Oligo‐induced up‐regulation of RAGE, matrix metalloproteinase (MMP)‐2, and MMP‐9. Furthermore, we found that these effects induced by Aβ1–42‐Oligo treatment were effectively suppressed by knockdown of RAGE using small interfering RNA (siRNA) transfection. We also found that GM 6001, a broad‐spectrum MMP inhibitor, partially reversed the Aβ1–42‐Oligo‐induced inhibitor effects in bEnd.3 cells. Thus, these results suggested that RAGE played an important role in Aβ‐induced BBB leakage and alterations of TJ scaffold proteins, through a mechanism that involved up‐regulation of MMP‐2 and MMP‐9.

  相似文献   


18.
Amyloid‐β peptide (Aβ) generation initiated by β‐site amyloid precursor protein cleaving enzyme 1 BACE1 is a critical cause of Alzheimer's disease. In the course of our ongoing investigation of natural anti‐dementia resources, the ethyl acetate (EtOAc) fraction exerted strong BACE1‐specific inhibition with the half maximal inhibitory concentration (IC50) value of 9.2 × 10?5 μg/mL. Furthermore, Aβ(25–35)‐induced cell death was predominantly prevented by the EtOAc fraction of Allomyrina dichotoma larvae through diminishing of cellular oxidative stress and attenuating apoptosis by inhibiting caspase‐3 activity. Taken together, the present study demonstrated that A. dichotoma larvae possess novel neuroprotective properties not only via the selective and specific inhibition of BACE1 activity but also through the alleviation of Aβ(25–35)‐induced toxicity, which may raise the possibility of therapeutic application of A. dichotoma larvae for preventing and/or treating dementia.  相似文献   

19.
Hypoxia–ischaemia (HI) remains a major cause of foetal brain damage presented a scarcity of effective therapeutic approaches. Dexmedetomidine (DEX) and microRNA‐140‐5p (miR‐140‐5p) have been highlighted due to its potentially significant role in the treatment of cerebral ischaemia. This study was to investigate the role by which miR‐140‐5p provides cerebral protection using DEX to treat hypoxic–ischaemic brain damage (HIBD) in neonatal rats via the Wnt/β‐catenin signalling pathway. The HIBD rat models were established and allocated into various groups with different treatment plans, and eight SD rats into sham group. The learning and memory ability of the rats was assessed. Apoptosis and pathological changes in the hippocampus CA1 region and expressions of the related genes of the Wnt/β‐catenin signalling pathway as well as the genes responsible of apoptosis were detected. Compared with the sham group, the parameters of weight, length growth, weight ratio between hemispheres, the rate of reaching standard, as well as Bcl‐2 expressions, were all increased. Furthermore, observations of increased levels of cerebral infarction volume, total mortality rate, response times, total response duration, expressions of Wnt1, β‐catenin, TCF‐4, E‐cadherin, apoptosis rate of neurons, and Bax expression were elevated. Following DEX treatment, the symptoms exhibited by HIBD rats were ameliorated. miR‐140‐5p and si‐Wnt1 were noted to attenuate the progression of HIBD. Our study demonstrates that miR‐140‐5p promotes the cerebral protective effects of DEX against HIBD in neonatal rats by targeting the Wnt1 gene through via the negative regulation of the Wnt/β‐catenin signalling pathway.  相似文献   

20.
Keyword index     
《Journal of neurochemistry》2002,83(6):1543-1546
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号