首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Abstract A comprehensive study on the Bemisia tabaci (biotype B) resistance to neonicotinoid insecticides imidacloprid, acetamiprid and thiamethoxam, and pyrethroid bifenthrin was conducted in Cyprus. The resistance level to eight field‐collected B. tabaci populations was investigated. The activities of enzymes involved in metabolic detoxification and the frequencies of pyrethroid and organophosphates target site resistance mutations were determined. Moderate to high levels of resistance were detected for imidacloprid (resistance factor [RF] 77–392) and thiamethoxam (RF 50–164) while low resistance levels were observed for acetamiprid (RF 7–12). Uniform responses by the Cypriot whiteflies could be observed against all neonicotinoid insecticides. No cross‐resistance between the neonicotinoids was detected as well as no association with the activity of the P450 microsomal oxidases. Only imidacloprid resistance correlated with carboxylesterase activity. Low to extremely high resistance was observed for insecticide bifenthrin (RF 49–1 243) which was associated with the frequency of the resistant allele in the sodium channel gene but not with the activity of the detoxification enzymes. Finally, the F331W mutation in the acetylcholinesterase enzyme ace1 gene was fixed in all B. tabaci populations from Cyprus.  相似文献   

2.
3.
《Journal of Asia》2022,25(2):101901
Cotton whitefly, Bemisia tabaci is an important polyphagous pest worldwide. It is exposed to various chemical insecticides throughout the year, resulting in the rapid development of insecticide resistance. Mixtures of insecticides with distinct modes of action could enhance the toxicity of chemicals more effectively than sequences or rotations in resistant pest populations. Bioassays were conducted to study the efficacy of mixtures of neonicotinoid and ketoenol insecticides at different ratios against a laboratory susceptible (Lab-WB) and a neonicotinoid resistant (TMX-SEL) strain of B. tabaci Asia I. The results showed that mixtures of imidacloprid, acetamiprid, thiamethoxam or dinotefuran with spiromesifen at 1:1, 1:10 and 1:20 ratios and of imidacloprid, thiamethoxam or dinotefuran with spirotetramat at 1:1 ratio significantly increased (p < 0.05) toxicity to neonicotinoids in TMX-SEL strain. The combination indices of each tested neonicotinoids + ketoenols at 1:1 ratio and of acetamiprid + spiromesifen, and imidacloprid or dinotefuran + spirotetramat at 1:10 ratio for TMX-SEL strain were significantly below 1, suggesting synergistic interactions. The inhibitors PBO and DEF largely overcame resistance to the tested neonicotinoids, while none of the synergists significantly restored the susceptibility of B. tabaci to ketoenols. Increased activities of P450 monooxygenase and esterase were observed in TMX-SEL strain with an elevated 2.76 and 1.32-fold, respectively. Mixtures of neonicotinoids with spiromesifen or spirotetramat at a 1:1 ratio could be used to restore the neonicotinoid susceptibility in B. tabaci.  相似文献   

4.
The neonicotinoid imidacloprid is one of the most important insecticides worldwide. It is used extensively against the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae), an insect pest of eminent importance globally, which was also the first pest to develop high levels of resistance against imidacloprid and other neonicotinoids in the field. Recent reports indicated that in both the B and Q biotypes of B. tabaci, the resistant phenotype is associated with over-expression of the cytochrome P450 gene CYP6CM1. In this study, molecular docking and dynamic simulations were used to analyze interactions of imidacloprid with the biotype Q variant of the CYP6CM1 enzyme (CYP6CM1vQ). The binding mode with the lowest energy in the enzyme active site, the key amino acids involved (i.e. Phe-130 and Phe-226), and the putative hydroxylation site (lowest distance to carbon 5 of the imidazolidine ring system of imidacloprid) were predicted. Heterologous expression of the CYP6CM1vQ confirmed the accuracy of our predictions and demonstrated that the enzyme catalyses the hydroxylation of imidacloprid to its less toxic 5-hydroxy form (Kcat = 3.2 pmol/min/pmol P450, Km = 36 μM). The data identify CYP6CM1vQ as a principle target for inhibitor design, aimed at inactivating insecticide-metabolizing P450s in natural insect pest populations.  相似文献   

5.
Nine Bemisia tabaci (Gennadius) populations were collected from different regions of Iran. In all nine populations, only one biotype (B biotype) was detected. Susceptibilities of these populations to imidacloprid and acetamiprid were assayed. The lethal concentration 50 values (LC50) for different populations showed a significant discrepancy in the susceptibility of B. tabaci to imidacloprid (3.76 to 772.06 mg l?1) and acetamiprid (4.96 to 865 mg l?1). The resistance ratio of the populations ranged from 9.72 to 205.20 for imidacloprid and 6.38 to 174.57 for acetamiprid. The synergistic effects of piperonylbutoxide (PBO) and S,S,S-tributylphosphorotrithioate (DEF) were evaluated for the susceptible (RF) and resistant (JR) populations for the determination of the involvement of cytochrome P450-dependent monooxygenase and carboxylesterase, respectively, in their resistance mechanisms. The results showed that PBO overcame the resistance of the JR population to both imidacloprid and acetamiprid, with synergistic ratios of 72.7 and 106.9, respectively. Carboxylesterase, glutathione S-transferase and cytochrome P450-dependent monooxygenase were studied biochemically, for the purpose of measuring the activity of the metabolizing enzymes in order to determine which enzymes are directly involved in neonicotinoid resistance. There was an increase in the activity of cytochrome P450-dependent monooxygenase up to 17-fold in the resistant JR population (RR?=?205.20). The most plausible activity of cytochrome P450-dependent monooxygenase correlated with the resistances of imidacloprid and acetamiprid, and this suggests that cytochrome P450-dependent monooxygenase is the only enzyme system responsible for neonicotinoid resistance in the nine populations of B. tabaci.  相似文献   

6.
7.
【目的】为明确韭菜迟眼蕈蚊Bradysia odoriphaga对新烟碱类杀虫剂的抗性水平及其抗性机制。【方法】通过测定不同地区韭菜迟眼蕈蚊对3种新烟碱类杀虫剂吡虫啉、噻虫嗪和噻虫胺的敏感度,及通过增效剂实验和酶活性测定,初步探索抗性产生机制,为韭菜迟眼蕈蚊抗性治理提供依据。【结果与结论】4个不同的韭菜迟眼蕈蚊田间种群对3种新烟碱类杀虫剂均产生了不同水平的抗性。其中,唐山种群对3种新烟碱杀虫剂均产生了较高的抗性。研究发现,唐山种群的7-乙氧基香豆素-O-脱乙基酶(ECOD)比活力为(3.89±0.31)pmol/(mg·pro·min),显著高于敏感品系。增效剂PBO对唐山种群的吡虫啉毒力的增效比为2.64,高于对敏感品系的增效比1.08。因此,P450s酶活性的升高与韭菜迟眼蕈蚊对吡虫啉的抗性有关。  相似文献   

8.
The two most damaging biotypes of Bemisia tabaci, B and Q, have both evolved strong resistance to the neonicotinoid insecticide imidacloprid. The major mechanism in all samples investigated so far appeared to be enhanced detoxification by cytochrome P450s monooxygenases (P450s). In this study, a polymerase chain reaction (PCR) technology using degenerate primers based on conserved P450 helix I and heme-binding regions was employed to identify P450 cDNA sequences in B. tabaci that might be involved in imidacloprid resistance. Eleven distinct P450 cDNA sequences were isolated and classified as members of the CYP4 or CYP6 families. The mRNA expression levels of all 11 genes were compared by real-time quantitative RT-PCR across nine B and Q field-derived strains of B. tabaci showing strong resistance, moderate resistance or susceptibility to imidacloprid. We found that constitutive over-expression (up to approximately 17-fold) of a single P450 gene, CYP6CM1, was tightly related to imidacloprid resistance in both the B and Q biotypes. Next, we identified three single-nucleotide polymorphic (SNP) markers in the intron region of CYP6CM1 that discriminate between the resistant and susceptible Q-biotype CYP6CM1 alleles (r-Q and s-Q, respectively), and used a heterogeneous strain to test for association between r-Q and resistance. While survivors of a low imidacloprid dose carried both the r-Q and s-Q alleles, approximately 95% of the survivors of a high imidacloprid dose carried only the r-Q allele. Together with previous evidence, the results reported here identify enhanced activity of P450s as the major mechanism of imidacloprid resistance in B. tabaci, and the CYP6CM1 gene as a leading target for DNA-based screening for resistance to imidacloprid and possibly other neonicotinoids in field populations.  相似文献   

9.
10.
Thiamethoxam has been used as a key insecticide to control the whitefly, B‐type Bemisia tabaci, for several years in China with no known cases of resistance in field populations. To evaluate the risk of resistance, a field population was collected and resistant strains were developed by exposure to thiamethoxam in the laboratory. After selection for 36 generation, a strain with 60‐fold resistance was successfully identified. Fitness analysis by constructing life tables, demonstrated that resistant B‐type whiteflies had obvious fitness disadvantages in their development and reproduction. The fitness of resistant B‐type whiteflies decreased dramatically, to only one‐half that of the susceptible strain. Some changes in the morphological characteristics of the resistant strain were observed. The lengths of first, second and third instars of the resistant strain were significantly smaller than those of the susceptible strain, and the width of the first and the fourth instars were also significantly smaller than in the susceptible strain. Our results suggest that the B‐type B. tabaci has the potential to develop high resistance to thiamethoxam, and that the resistance changed the morphology of the insects. The slow development of resistance and the lower fitness of resistant B. tabaci strains may result in a quick recovery of sensitivity when the population is no longer in contact with thiamethoxam in the field.  相似文献   

11.
Imidacloprid and thiamethoxam are neonicotinoids that have been tested in several Orius species, including Orius laevigatus (Fieber) (Hemiptera: Anthocoridae), but not the variability in their effect among Orius populations of a single species. In this study, the variation in susceptibility to imidacloprid and thiamethoxam in 30 Mediterranean wild populations and four commercial populations of O. laevigatus was investigated in the laboratory using a standard dip bioassay method. Lethal concentration values (LC50) and the mortality of adults at the maximum field rate (MFR) were calculated. The range of LC50 of thiamethoxam was from 0.7 to 5.9 mg l?1, an 8.4‐fold variability, obtaining mortality at MFR (100 mg l?1) of >89.1% in all populations. The baseline obtained a value of 2.1 mg l?1, which is very low compared to the MFR. For imidacloprid, the LC50 varied from 7.7 to 94.7 mg l?1 (12.3‐fold variability). Mortalities at the MFR (150 mg l?1) were 57.7–99.2%, that is, more variable than for thiamethoxam. The LC50 value of the baseline was 48.7 mg l?1, also low compared to the MFR. This variation was exploited to select two populations resistant to thiamethoxam and imidacloprid, respectively. Artificial selection for on average 40 cycles significantly increased the resistance to thiamethoxam (LC50 = 149.1 mg l?1) and imidacloprid (LC50 = 309.9 mg l?1). Mortalities at the MFR in the thiamethoxam‐ and imidacloprid‐resistant populations were 44.5 and 36.9%, respectively. These results demonstrate that resistance can be enhanced in biocontrol agents by artificial selection under laboratory conditions, starting with populations showing no or very low tolerance. Our neonicotinoid‐resistant populations might enhance the wider adoption of biological control by allowing punctual or hotspot applications of neonicotinoids to control several main and secondary pests.  相似文献   

12.
13.
14.
Target insensitivity contributing to imidacloprid resistance in Nilaparvata lugens has been reported to occur either through point mutations or quantitative change in nicotinic acetylcholine receptors (nAChRs). However, the metabolic resistance, especially the enhanced detoxification by P450 enzymes, is the major mechanism in fields. From one field-originated N. lugens population, an imidacloprid resistant strain G25 and a susceptible counterpart S25 were obtained to analyze putative roles of P450s in imidacloprid resistance. Compared to S25, over-expression of twelve P450 genes was observed in G25, with ratios above 5.0-fold for CYP6AY1, CYP6ER1, CYP6CS1, CYP6CW1, CYP4CE1 and CYP425B1. RNAi against these genes in vivo and recombinant tests on the corresponding proteins in vitro revealed that four P450s, CYP6AY1, CYP6ER1, CYP4CE1 and CYP6CW1, played important roles in imidacloprid resistance. The importance of the four P450s was not equal at different stages of resistance development based on their over-expression levels, among which CYP6ER1 was important at all stages, and that the others might only contribute at certain stages. The results indicated that, to completely reflect roles of P450s in insecticide resistances, their over-expression in resistant individuals, expression changes at the stages of resistance development, and catalytic activities against insecticides should be considered. In this study, multiple P450s, CYP6AY1, CYP6ER1, CYP4CE1 and CYP6CW1, have proven to be important in imidacloprid resistance.  相似文献   

15.
Nilaparvata lugens and Sogatella furcifera are two primary planthoppers on rice throughout Asian countries and areas. Neonicotinoid insecticides, such as imidacloprid (IMI), have been extensively used to control rice planthoppers and IMI resistance consequently occurred with an important mechanism from the over‐expression of P450 genes. The induction of P450 genes by IMI may increase the ability to metabolize this insecticide in planthoppers and increase the resistance risk. In this study, the induction of P450 genes was compared in S. furcifera treated with IMI and nitromethyleneimidazole (NMI), in two planthopper species by IMI lethal dose that kills 85% of the population (LD85), and in N. lugens among three IMI doses (LD15, LD50 and LD85). When IMI and NMI at the LD85 dose were applied to S. furcifera, the expression changes in most P450 genes were similar, including the up‐regulation of nine genes and down‐regulation of three genes. In terms of the expression changes in 12 homologous P450 genes between N. lugens and S. furcifera treated with IMI at the LD85 dose, 10 genes had very similar patterns, such as up‐regulation in seven genes, down‐regulation in one gene and no significant changes in two genes. When three different IMI doses were applied to N. lugens, the changes in P450 gene expression were much different, such as up‐regulation in four genes at all doses and dose‐dependent regulation of the other nine genes. For example, CYP6AY1 could be induced by all IMI doses, while CYP6ER1 was only up‐regulated by the LD50 dose, although both genes were reported important in IMI resistance. In conclusion, P450 genes in two planthopper species showed similar regulation patterns in responding to IMI, and the two neonicotinoid insecticides had similar effects on P450 gene expression, although the regulation was often dose‐dependent.  相似文献   

16.
《Journal of Asia》2020,23(4):1248-1254
The sweet potato whitefly, Bemisia tabaci Gennadius, is an important insect pest of many crops including vegetables through direct feeding damage and as a vector of several plant viruses. Intensive use of insecticides has led to the development of insecticide resistance in global B. tabaci populations. This study was conducted to establish susceptibility levels to deltamethrin, thiamethoxam and pyriproxyfen in seven geographically different populations of B. tabaci MEAM1 adults in Oman. All B. tabaci populations showed very low to low level of resistance (2.1–12.3 fold) to deltamethrin. All B. tabaci populations showed no resistance to very low level of resistance to thiamethoxam (2.2–6.2 fold) and pyriproxyfen (2.4–3.5 fold). A likelihood analysis showed the possibility for control failure in two populations (Barka and Salalah) to deltamethrin, however, no possible failure was detected in all populations for thiamethoxam and pyriproxyfen. An insecticide resistance dynamics study in one population (SQU-1) showed a loss in susceptibility to deltamethrin with increase in the LC50 value from 25.1 mg L−1 to 84.5 mg L−1 between 2017 and 2019 resulting in 5.3 fold increase in RF. The study results determined that several B. tabaci populations are at the initial stages of resistance development to deltamethrin and cross-resistance with thiamethoxam and pyriproxyfen. Vegetable farmers in Oman, the Barka and Salalah regions in particular, should be cautious in the repeated use of one class of insecticide alone.  相似文献   

17.
The whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), is a serious pest in many cropping systems world-wide and occurs in different biotypes. The most widespread one is the B-type, whereas the Q-biotype is nowadays still mostly restricted to Southern Spain. Neonicotinoid cross-resistance is known at a high level in Q-types from Spain and individual samples collected in Italy and Germany. Now we detected for the first time high neonicotinoid cross-resistance in a B-type from Israel. Target site resistance to imidacloprid using [(3)H]imidacloprid in nicotinic acetylcholine receptor (nAChR) binding assays could not be detected in any of these highly resistant strains. The impact of metabolizing enzymes such as esterases, glutathione S-transferases, and cytochrome P450-dependent monooxygenases in neonicotinoid resistance was studied biochemically with artificial substrates. Monooxygenase activity was increased 2-3-fold in moderately resistant strains (RF approximately 30) and even 5-6-fold in highly resistant strains (RF approximately 1,000). Only monooxygenase activity correlated with imidacloprid, thiamethoxam and acetamiprid resistance and, therefore, monooxygenases seem to be the only enzyme system responsible for neonicotinoid resistance in B. tabaci Q- and B-types. The oxidative degradation of imidacloprid in resistant Q-type strains could be confirmed by metabolism studies of [(14)C]imidacloprid in vivo. Five-hydroxy-imidacloprid could be detected as the only main metabolite. The insecticidal activity and binding affinity to nAChR of this compound was 10 times lower than imidacloprid itself in B. tabaci.  相似文献   

18.
19.
The interactions of six neonicotinoid pesticides and one neonicotinoid metabolite with drug transporters have been characterized in vitro. Acetamiprid, clothianidin, imidacloprid, nitenpyram, thiacloprid and its metabolite thiacloprid amide, and thiamethoxam, each used at 100 µM, did not impair activity of the efflux pumps P‐glycoprotein, multidrug resistance‐associated proteins, and breast cancer resistance protein. They also did not inhibit that of the uptake transporters OATP1B1, OATP1B3, OAT4, and MATE1, whereas that of OATP2B1, OAT1, and MATE2‐K was affected by only one of the seven neonicotinoids. Activity of OCT1 was moderately stimulated (up to 1.5‐fold) by several neonicotinoids. By contrast, that of OAT3 and OCT2 was inhibited by most (OAT3), if not all (OCT2), neonicotinoids, with IC50 values in the 20 to 60 µM range for thiacloprid, likely not relevant to environmental exposure. Thiacloprid was moreover not transported by OAT3 and OCT2. Overall, these data suggest that neonicotinoid pesticides rather poorly interact with drug transporter activities.  相似文献   

20.
Field experiments were done to determine whether drenching plants with two systemically active neonicotinoid insecticides, thiamethoxam and imidacloprid, suppresses spread of Tomato spotted wilt virus (TSWV) by thrips vectors. Separate treatments to TSWV ‘infector’ tomato (source) and healthy lettuce (recipient) plants provided information on the relative importance of targeting control at virus acquisition by nymphs versus virus transmission to healthy plants by adults. Drenches were applied either to seedlings just before transplanting or to soil around plants. The thrips vectors recorded were Frankliniella occidentalis, F. schultzei and Thrips tabaci, but F. schultzei and T. tabaci predominated. Overall ratios of external to internal TSWV spread into and within plots without insecticide ranged from 1 : 2.3 to 1 : 2.8 between field experiments. Applying thiamethoxam as a soil drench to both young source plants and recipient seedling transplants suppressed TSWV incidence by 86%, while such application to either young source or recipient seedlings diminished incidence by 67–70%. When thiamethoxam was applied either as a soil drench to old source plants and concurrently as a seedling drench to recipient plants or as a seedling drench to recipient plants alone, incidence was suppressed by 65–73% and 54–73%, respectively. Thiamethoxam applied as a soil drench to old source plants diminished incidence by only 33% or not significantly. Imidacloprid applied either as a soil drench to old source plants and concurently as a seedling drench or as a seedling drench alone, suppressed TSWV incidence by 90–92% and 80% respectively. Although adult vector thrips and nymph numbers were low, fewer adults and/or nymphs were sometimes recorded due to insecticide application. Drenching healthy seedlings with neonicotinoid insecticides just before transplanting can be an effective chemical control measure to include in integrated disease management strategies to suppress TSWV epidemics in short‐duration crops like lettuce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号