首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Populus euphratica Oliv. is a main tree species that forms natural riparian forests in arid and semi-arid areas from Morocco to the Ordos Plateau. This study is designed to clarify the forest structure and dynamics of P. euphratica and to elucidate the ecological mechanisms sustaining riparian forests under unreliable environmental conditions. This study was conducted in a P. euphratica forest of the Ejina Oasis in Inner Mongolia, China, which is a hyperarid area. According to their tree size distribution, P. euphratica forests can be grouped into juvenile, mature, and overmatured stages. Almost all large P. euphratica showed dieback. The regeneration density on the forest floor shows a relation with the degree of height decrease due to dieback damage, as evaluated using the ratio of actual height to the maximum height estimated from the DH relation. Therefore, after the mature stage, individual trees continue to grow while controlling their canopy size to adjust to changing environmental conditions in the overmatured stage. Our results suggest that P. euphratica growing under large fluctuations in groundwater levels exhibit a sophisticated regeneration system with canopy degradation.  相似文献   

2.
Theory predicts that the postindustrial rise in the concentration of CO2 in the atmosphere (ca) should enhance tree growth either through a direct fertilization effect or indirectly by improving water use efficiency in dry areas. However, this hypothesis has received little support in cold‐limited and subalpine forests where positive growth responses to either rising ca or warmer temperatures are still under debate. In this study, we address this issue by analyzing an extensive dendrochronological network of high‐elevation Pinus uncinata forests in Spain (28 sites, 544 trees) encompassing the whole biogeographical extent of the species. We determine if the basal area increment (BAI) trends are linked to climate warming and increased ca by focusing on region‐ and age‐dependent responses. The largest improvement in BAI over the past six centuries occurred during the last 150 years affecting young trees and being driven by recent warming. Indeed, most studied regions and age classes presented BAI patterns mainly controlled by temperature trends, while growing‐season precipitation was only relevant in the driest sites. Growth enhancement was linked to rising ca in mature (151–300 year‐old trees) and old‐mature trees (301–450 year‐old trees) from the wettest sites only. This finding implies that any potential fertilization effect of elevated ca on forest growth is contingent on tree features that vary with ontogeny and it depends on site conditions (for instance water availability). Furthermore, we found widespread growth decline in drought‐prone sites probably indicating that the rise in ca did not compensate for the reduction in water availability. Thus, warming‐triggered drought stress may become a more important direct driver of growth than rising ca in similar subalpine forests. We argue that broad approaches in biogeographical and temporal terms are required to adequately evaluate any effect of rising ca on forest growth.  相似文献   

3.
To understand the spatial structure of monospecific Tugai forests (Xinjiang Province, China) growing as gallery woods nourished by ground water, root suckering in Populus euphratica was studied by a combination of morphological and molecular analyses. Seedlings grow a deep tap root and keep this as adult trees, whereas root suckers never develop a tap root but utilize the horizontally stretching root of their parent trees. The resulting reverse “T” root architecture distinguishes reliably even adult root suckers from generatively grown trees. Due to assimilate input from the root sucker, the distal root (pointing away from the parent tree) becomes thicker soon than its proximal root, which allows determination of the direction of vegetative growth. One stand including 279 young trees germinated from seeds and 267 root suckers was mapped completely, and selected suckers were assigned to parent trees by genotyping with microsatellite DNA. Root suckers develop up to 40 m away from parent trees on horizontal “spacer” roots, usually originating not deeper than 20 cm below surface. Trees begin with root suckering between 10 and 15 years, shortly before reaching flowering age. Cutting experiments indicated reduced survival of young root suckers disconnected from the parent tree. Without a tap root and with a rooting point close to the surface, declining ground water levels should lower the fitness of root suckers even more than that of generatively grown trees.  相似文献   

4.
  1. Pure forests are often seen as being more prone to damage by specialist pest insects than mixed forests, and particularly mixed forests associating host and nonhost species. We addressed the effect of tree diversity on oak colonization and defoliation by a major specialist pest, the oak processionary moth (OPM)
  2. We quantified the number of male OPM moths captured and larval defoliation in pure stands of two oak host species (Quercus robur and Quercus petraea) and in mixed stands associating the two oak species or each oak species with another nonhost broadleaved species. We conducted two complementary studies to test the effect of host species and stand composition: (i) we used pheromone trapping to compare the number of males OPM captured throughout the distribution of oak hosts in France and (ii) we noted the presence of OPM nests and estimated defoliation in mature forests of north‐eastern France.
  3. Oak species and stand composition significantly influenced the number of male OPM captured and defoliation by OPM larvae. Quercus petraea was consistently more attractive to and more defoliated by OPM than Q. robur. Both oak trees were attacked more in pure stands than in mixed stands, in particular mixed stands associating oaks with another (nonhost) broadleaved species.
  4. The results of the present study support the view that mixed forests are more resistant to specialist pest insects than pure stands, and also indicate that this trend depends on forest composition. Our study provides new insights into OPM ecology and has potential implications for forest management, including the management of urban forests where OPM causes serious human health issues.
  相似文献   

5.
以塔里木河下游天然胡杨林为研究对象,利用Riegl VZ-1000型地面激光扫描仪(Terrestrial Laser Scanning, TLS)获取离河道不同距离的8个样方内513棵胡杨的三维点云数据,通过建立冠层高度模型、Hough变换等方法获取单木株数和结构参数,并与传统的每木检尺实测数据和无人机(Unmanned Aerial Vehicle, UAV)低空影像进行对比,验证激光雷达方法的测树精度;对TLS获取的胡杨树形参数进行相关性分析,并建立关系模型;探讨不同水胁迫条件(不同离河道距离,不同地下水埋深)对胡杨单木结构参数的影响;最后按不同径级划分胡杨的年龄,得出各龄级胡杨所占比例。结果表明:(1)TLS能够高精度获取不同密度和长势的胡杨单木株数和结构参数,单株准确分割比率为94%—100%,相对于UAV低空影像更为准确;(2)TLS获取的胡杨树高(Tree height,TH)、胸径(Diameter at breast height, DBH)、冠幅直径(Crown diameter,CD)和冠幅面积(Crown area,CA)与传统实测值拟合度R~2较高,分别为0.95、0.97、0.77和0.84,表明实测数据和TLS获取数据无明显差异;(3)胡杨CD、CA分别与TH呈显著正相关,其相关性系数为0.73、0.67;基于此构建了胡杨TH与CD的关系模型,即TH=2.6274×CD~(0.706),R~2为0.64;(4)根据径级划分胡杨年龄段可知,DBH为15—30 cm的近熟林比例最大,占8个样方内监测胡杨总株数的47%,表明胡杨种群年龄结构相对稳定并总体态势良好,呈现了生态输水对塔河下游胡杨种群恢复有明显的促进作用。总之,激光雷达技术能够客观反映胡杨树形结构参数,可替代耗力、耗费、耗时的传统实测方法,为时时掌握胡杨林生长发育、长势动态以及多尺度、多时相生态耗水研究提供高精度信息,为干旱区荒漠河岸林的有效保护与可持续管理提供科学依据。  相似文献   

6.
Teste FP  Simard SW 《Oecologia》2008,158(2):193-203
The distribution of dry Douglas-fir forests in western North America is expected to shift northward with climate change and disappear from the grassland interface in the southern interior of British Columbia. This shift may be accentuated by clearcutting, a common harvesting practice that aims to reduce the competitive effects of residual mature trees on new regeneration, but in so doing, ignores their facilitative effects. In this study, we investigated the net effects of competition from and facilitation by mature trees retained on harvested sites on seedling establishment in the dry interface Douglas-fir forests. We demonstrate that access to a mycorrhizal network (MN) and proximity to trees have important influences on seedling performance. On six sites, we established trenched plots around 24 mature Pseudotsuga menziesii var. glauca (Douglas-fir) trees, then planted Douglas-fir seedlings into four mesh treatments that served to restrict MN access (i.e., planted into mesh bags with 0.5-, 35-, or 250-μm pores, or without mesh) or into impermeable bags (grown in isolation) at four distances (0.5, 1.0, 2.5, or 5.0 m). Seedling survival tended to be greater and water stress lower where seedlings had full access to the MN. Seedling height, shoot biomass, needle biomass, and nutrient uptake peaked at 2.5–5.0 m from mature trees. Seedlings 0.5 m from mature trees had lower CO2 assimilation rates and wood δ13C compared to seedlings 5.0 m away. Competition for soil resources was highest near mature trees but facilitation was relatively greater at further distances, resulting in a zone of net benefit for seedlings. These results show that intraspecific tree-seedling interactions are both competitive and facilitative in dry Douglas-fir forests, and that they are spatially dependent. After disturbance, maintaining residual mature trees may be important for their beneficial regeneration zones. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
黄土区不同林龄刺槐人工林细根的衰老生理特征   总被引:3,自引:0,他引:3  
苏瑾  王迪海 《生态学报》2016,36(14):4423-4429
以黄土高原刺槐人工林为研究对象,采用手工挖掘法,配合完整土块法获取根系样品,分析幼龄(11a),中龄(22a),成熟(34a)刺槐人工林细根活力、可溶性糖含量、可溶性蛋白含量和细胞膜透性等细根衰老生理指标的差异,为深入了解刺槐细根的生长和衰老机制提供参考。结果表明:(1)在生长季节,刺槐细根活力表现为,幼龄林成熟林中龄林,可溶性糖含量、可溶性蛋白含量随着林龄增大而增加,而细胞膜透性则随林龄的增加而减小。(2)随着根序增加,根活力和可溶性糖含量增加,而可溶性蛋白含量和细胞膜透性则呈波动式降低。这表明,在生长季节幼龄林细根较中龄林和成熟林更容易出现衰老,刺槐不同根序衰老具有顺序性,衰老先从1级根开始,然后是2级根和3级根。  相似文献   

8.
9.
The disturbance regime in mixed-wood forests of eastern Canada is characterized by both natural disturbances including wildfires and insect outbreaks as well as forestry. The understanding of how understorey plant assemblages respond to different disturbances is mostly limited to short-term wildfire-logging comparisons of vascular plants. Here, we compare patterns of species richness and composition of four bryophyte guilds in young forests (approx. 40 years old) regenerating after clear-cut logging, wildfire, and spruce budworm outbreak. In addition, young forests were compared with mature spruce-fir dominated stands (approx. 90 years old). Although similar in overall species richness at the scale of 1,000 m2 all young forest types were compositionally distinct with fewer species than mature forests. Stands developed after spruce budworm outbreaks had the highest canopy cover values and the highest surface area of coarse woody debris. These stands had similar numbers of woody debris species as mature forests and were closest to mature forests in species composition. Wildfire-disturbed sites were dominated by deciduous trees and a high number of treebase species. Finally, young managed forest had the highest number of forest floor bryophytes at the scale of 100 m2 among the three young forest types, but was compositionally far from mature forests in their woody debris flora. In conclusion, young forests regenerating after natural disturbances are distinctly different from young forests regenerated after clear-cutting and if natural disturbances are eliminated certain species (e.g., epixylic and treebase species) might become more restricted to older stands in the landscape.  相似文献   

10.
Hydraulic redistribution (HR) is a process by which water moves through plant roots from moist to dry soils. An experiment was conducted to quantify the influence of common mycorrhizal networks (CMNs) and proximity to mature HR-source trees on the water relations of surrounding seedlings. Douglas-fir (Pseudotsuga menziesii var glauca (Mirb.) Franco) seedlings were planted at four distances (0.5, 1, 2.5, and 5 m) from six mature Douglas-fir trees, either directly into soil (soil plus CMN pathway) or inside 0.5 μm mesh bags (soil-only pathway). Deuterated water was used to irrigate soil beside mature trees in order to identify different HR water pathways to surrounding seedlings. This was followed by measurements of seedling deuterium enrichment, seedling water potential, soil water potential, gravimetric soil water content, and tree root density surrounding the seedlings. There was no significantly detectable difference in the quantity of HR water transferred to seedlings having access to soil and CMN pathways or soil-only pathways of water movement. Water from the irrigation plot contributed up to 1.4% of the water of Douglas-fir seedlings. Based on the assumption that the only pathway through which seedlings could access irrigation water was through the mature trees, we estimate that as much as 21.6% of the seedling water was supplied by the nearby tree. Seedling water potential was not significantly affected either by proximity to mature trees or pathway, suggesting HR may have compensated for increasing tree competitive effects with proximity. It is also possible that the lack of difference was due to a relatively moist summer. Our results suggest that residual mature trees are potentially important for hydraulic redistribution to regenerating seedlings in harvested dry interior Douglas-fir forests.  相似文献   

11.
12.
13.
  • 1 Spatial pattern in the distribution and abundance of organisms is an emergent property of collective rates of reproduction, survival and movement of individuals in a heterogeneous environment.
  • 2 The form, intensity and scale of spatial patterning can be used to test hypotheses regarding the relative importance of candidate processes to population dynamics.
  • 3 Using 84 plots across eastern North America, we studied populations of two associated plant parasites, the invasive felted beech scale Cryptococcus fagisuga Lind. and the native Neonectria fungi, which together cause beech bark disease (BBD).
  • 4 We evaluated spatial patterns at the scales of trees within stands, stands within the forest and forests within the landscape to examine four hypothetically important factors in the ecology of the disease: (i) local contagion within stands; (ii) regional contagion, or among patch infection–reinfection dynamics; (iii) variation in host susceptibility linked to genetic and/or environmental heterogeneity; and (iv) climate effects on population growth of BBD organisms.
  • 5 Analyses revealed an unexpected lack of spatial aggregation in BBD populations among trees, stands and forests. This implies that propagule pressure is generally sufficiently high throughout the infested region of North America such that neither trees nor stands are spared from the disease by dispersal limitations of the disease agents. Furthermore, variation in tree and stand level susceptibility has minimal impact on BBD dynamics and climate is not a conspicuous driver of abundance within the core range of BBD.
  相似文献   

14.
The study aimed at establishing the role of two possible water sources (inundation, ground water) for the water supply to the perennial plant species Alhagi sparsifolia, Calligonum caput-medusae, Populus euphratica and Tamarix ramosissima growing in the transition zone between a river oasis and the open desert at the southern fringe of the Taklamakan desert (Xinjiang province, NW China). The basic hypothesis was that inundations, which normally occur in summer when rivers from a nearby mountain range carry high water, contribute significantly to the plants’ water supply. When, in the first summer, inundations did not occur, four sites, each of which covered by a relatively dense stand of one species, were artificially flooded. Soil and plant water relations as well as meteorological variables were measured during two growing seasons. Water use efficiency of production (WUEP) was calculated by relating biomass production, which was determined using allometric regressions, to water use.The effects of artificial flooding on the plant water relations were negligible. Water use was relatively high, especially in the A. sparsifolia and the P. euphratica stands and in a dense stand of T. ramosissima (up to approx. 500 kgH2O m−2 year−1). Using the total above-ground biomass in the calculation, WUEP was highest in C. caput-medusae and P. euphratica, and lowest, in A. sparsifolia. From soil and plant water relations, and against the background of the climate and the productivity of the vegetation, it is concluded that all perennial plants in the transition zone between oases and desert in that region must have sufficient access to ground water to ensure long-term survival. Management of ground water such that it remains continuously accessible to the perennial plants is a prerequisite for the conservation and sustainable use of the vegetation in the transition zone.  相似文献   

15.
Species diversity in mixed forest stands is one of the factors that complicate up-scaling of transpiration from individual trees to stand level, since tree species are architecturally and functionally different. In this study, thermal dissipation probes were used to measure sap flow in five different tree species in a mixed-deciduous mountain forest in South Korea. Easily measurable tree characteristics that could serve to define individual tree water use among the different species were employed to scale up transpiration from single trees to stand level. Tree water use (TWU) was derived from sap flux density (SFD) and sapwood area (SA). Canopy transpiration E was scaled from TWU while canopy conductance (g c) was computed from E and VPD. SFD, TWU and g c were correlated with tree diameter at breast height (DBH) for all the five measured species (SFD: R 2 = 0.21, P = 0.036; TWU: R 2 = 0.83, P < 0.001; g c: R 2 = 0.63, P < 0.001). Maximum stand transpiration (E) during June, before the onset of the Asian monsoon rains, was estimated at 0.97 ± 0.12 mm per day. There was a good (R 2 = 0.94, P < 0.0001) agreement between measured and estimated E using the relationship between TWU and DBH. Our study shows that using functional models that employ converging traits among species could help in estimating water use in mixed forest stands. Compared to SA, DBH is a better scalar for water use of mixed forest stands since it is non-destructive and easily obtainable.  相似文献   

16.
  • 1 The mutualism between wood ants of the Formica rufa group and aphids living in the canopy of trees is a widespread phenomenon in boreal forests, and it can affect tree growth. However, not all trees in the forest are involved in this interaction.
  • 2 To assess the incidence of host trees involved in this ant–aphid mutualism and its spatial distribution in boreal forests, we inventoried sample plots with a radius of 10–15 m around wood ant mounds in 12 forest stands of two age classes (5–12‐year‐old sapling stands and 30–45‐year‐old pole stands) and two dominant tree species (Scots pine and silver birch) in Eastern Finland from 2007 to 2009.
  • 3 The proportion of trees visited by ants out of all trees on the individual study plots were in the range 4–62%, and 1.5–39% of the trees on the plots were consistently visited by ants during all 3 years. The percentage of host trees increased with the ant mound base area on the plots. Trees visited by ants were larger and closer to the mound than trees not visited by ants. Within the group of visited trees, more ants were found on bigger trees and on trees close to the ant mounds.
  • 4 Extrapolated from plot to stand level, we estimated that 0.5–6.6% of the trees were host trees in at least one of the three study years, and that only 0.01–2.3% of all the trees were consistently visited by ants during all 3 years. It is concluded that ant–aphid mutualism is a minor occurrence at the stand level.
  相似文献   

17.
目前胡杨更新困难,种群处于退化阶段,而与其生态位高度重叠的多枝柽柳却在扩张。为探讨多枝柽柳对胡杨生长的影响,本研究设置了3个水平的水分、盐分梯度,对胡杨进行了单种和混种的盆栽控制实验,通过测定胡杨幼苗的生长和存活状况,分析不同水、盐梯度下多枝柽柳如何影响胡杨生长。结果表明:(1)多枝柽柳伴生降低当年生胡杨幼苗的存活率,随着水分条件改善,胡杨存活率提高,而盐分对存活率没有显著的影响。(2)水分、盐分和伴生模式几个因子对胡杨的生长特征的影响存在显著的交互作用(P<0.05)。各水盐条件下,多枝柽柳会不同程度降低胡杨幼苗的株高、主根长和地上地下生物量,而根冠比增大。混种条件下,胡杨幼苗对水盐的响应更为敏感。(3)相对竞争强度对水盐环境有明显的响应(P<0.05),随水分条件改善,地上、地下相对竞争强度降低。多枝柽柳对胡杨的生长产生不良影响的机制是通过快速消耗土壤的水分,从而导致胡杨幼苗水分亏缺。土壤水分条件是胡杨和多枝柽柳幼苗共存的关键因素,在水分供给不足的情况下,对水分偏好的差异导致胡杨无法通过实生苗进行有效的更新从而加剧胡杨种群的衰退,而多枝柽柳更为耐旱的特性使其逐步占据河岸的生境。我们的研究结果强调了两个树种对环境因子的适应性差异决定了河岸带植被发育过程中植物-土壤的相互作用导致胡杨在演替过程中表现出的衰退现象。  相似文献   

18.
Lowered temperatures may reduce the root water uptake of tropical trees at high elevations through several mechanisms; however, field studies to test their relevance are lacking. We measured sap flux density (J) in small-diameter tree roots across a 2000-m elevation transect in a tropical mountain forest for quantifying the effects of temperature (Ta), VPD and soil moisture (θ) on root water flow and uptake at different elevations. Recently developed miniature heat balance-sap flow gauges were applied to roots of about 10 mm in diameter in mountain forest stands at 1050, 1890 and 3060 m a.s.l. in the Ecuadorian Andes and the measured flow was related to anatomical properties of the root xylem. Between 1050 and 3060 m, mean J decreased to about a third. VPD was the most influential environmental factor controlling J at 1050 and 1890 m, while Ta was the key determinant at 3060 m. Large vessels were absent in the root xylem of high-elevation trees which resulted in a 10-fold decrease of theoretical hydraulic conductivity (khtheor) between 1050 and 3060 m. We conclude that both physical limitations (reduced VPD, increased viscosity of water) and biological constraints (large decrease of khtheor) result in a significantly reduced J and root water uptake of the trees in high-elevation tropical forests.  相似文献   

19.
Questions: 1. How big is the difference in the herbaceous layer composition between flooded and unflooded stands? 2. Are there species or species groups which have an affinity to ancient vs. recent forests in stands with different water regimes? 3. Are patterns of life history traits different between flooded and unflooded stands as well as between ancient and recent forests in stands with a different water regime? Location: Floodplain forests in the Middle Elbe region and district of Leipzig, Central Germany. Location: The herbaceous layer was studied in randomly selected quadrats of 9 m2 in 2000 and 2001. Six ancient (nplot=59) and six adjacent recent forests (nplot=108) were investigated in flooded stands as well as three ancient (nplot=41) and three recent forests (nplot=70) in stands that have not been flooded for 50 years. The association of single species, species groups and life history traits were statistically tested for flooded vs. unflooded stands and for ancient vs. recent forests. Results: Interruption of flooding caused a complete species turnover in the herbaceous layer composition. Whereas in the still flooded stands typical alluvial species prevail, species composition in stands without flooding for 50 years showed a closed relation to the Stellario‐Carpinetum. Six herbaceous species in the flooded and five in the unflooded stands showed a preference for ancient forests. Only one species in the flooded and six herbaceous species in the unflooded stands are significantly associated with recent forests. Life history traits differ between flooded and unflooded stands but are similar in ancient and recently flooded stands, while unflooded ancient forests have more geophytes and myrmecochorous species than recent forests. Conclusions: The specificity of species composition in floodplain forests can only be maintained by regular flooding. Interruption of inundations lead to differences in the patterns of species composition and life history traits between ancient and recent forests.  相似文献   

20.
The fine root systems of three tropical montane forests differing in age and history were investigated in the Cordillera Talamanca, Costa Rica. We analyzed abundance, vertical distribution, and morphology of fine roots in an early successional forest (10–15 years old, ESF), a mid‐successional forest (40 years old, MSP), and a nearby undisturbed old‐growth forest (OGF), and related the root data to soil morphological and chemical parameters. The OGF stand contained a 19 cm deep organic layer on the forest floor (i.e., 530 mol C/m2), which was two and five times thicker than that of the MSF (10 cm) and ESF stands (4 cm), respectively. There was a corresponding decrease in fine root biomass in this horizon from 1128 g dry matter/m2 in the old‐growth forest to 337 (MSF) and 31 g/m2 (ESF) in the secondary forests, although the stands had similar leaf areas. The organic layer was a preferred substrate for fine root growth in the old‐growth forest as indicated by more than four times higher fine root densities (root mass per soil volume) than in the mineral topsoil (0–10 cm); in the two secondary forests, root densities in the organic layer were equal to or lower than in the mineral soil. Specific fine root surface areas and specific root tip abundance (tips per unit root dry mass) were significantly greater in the roots of the ESF than the MSF and OGF stands. Most roots of the ESF trees (8 abundant species) were infected by VA mycorrhizal fungi; ectomycorrhizal species (Quercus copeyemis and Q. costaricensis) were dominant in the MSF and OGF stands. Replacement of tropical montane oak forest by secondary forest in Costa Rica has resulted in (1) a large reduction of tree fine root biomass; (2) a substantial decrease in depth of the organic layer (and thus in preferred rooting space); and (3) a great loss of soil carbon and nutrients. Whether old–growth Quercus forests maintain a very high fine root biomass because their ectomycorrhizal rootlets are less effective in nutrient absorption than those of VA mycorrhizal secondary forests, or if their nutrient demand is much higher than that of secondary forests (despite a similar leaf area and leaf mass production), remains unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号