首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  • Pedicularis is the largest genus in the Orobanchaceae (>300) with many species co‐occurring and co‐blooming in subalpine to alpine meadows in the Himalayas. Although it is well known that different Pedicularis species place pollen on different parts of the same bumblebee's body, thus reducing interspecific pollen transfer, it is not known whether post‐pollination components also contribute to reproductive isolation (RI).
  • In this study, we quantified the individual strengths and absolute contributions of six pre‐ and post‐pollination components of RI between three sympatric species in two pairs; Pedicularis gruina × Pedicularis tenuisecta (gru × ten) and Pedicularis comptoniifolia × Pedicularis tenuisecta (com × ten).
  • All three Pedicularis species shared the same Bombus species. Individual foragers showed a high, but incomplete, floral constancy for each species. Therefore, pre‐pollination barriers were potentially ‘leaky’ as Bombus species showed a low but consistent frequency of interspecific visitation. The RI strength of pre‐pollination was lower in com × ten than in gru × ten. In contrast, post‐pollination barriers completely blocked gene flow between both sets of species pairs. Two post‐pollination recognition sites were identified. Late acting rejection of interspecific pollen tube growth occurred in com♀ × ten♂, while seeds produced in bi‐directional crosses of gru × ten failed to germinate.
  • We propose that, although floral isolation based on pollen placement on pollinators in the genus Pedicularis is crucial to avoid interspecific pollen transfer, the importance of this mode of interspecific isolation may be exaggerated. Post‐pollination barriers may play even larger roles for currently established populations of co‐blooming and sympatric species in this huge genus in the Himalayas.
  相似文献   

2.
Reproductive barriers play an important role in the maintenance of species boundaries. However, to date, few studies have provided a detailed analysis of reproductive isolation barriers between species or examined their importance in maintaining species identity. This is the first detailed study into pre‐ and post‐zygotic reproductive isolation barriers in Antirrhinum, based on a mixed population with two species that rarely co‐occur. The study revealed that pollinator constancy and preference and poor hybrid seed viability were the most important reproductive isolating mechanisms. Reproductive isolation was practically complete by both pre‐ and post‐zygotic barriers. Average pre‐zygotic isolation was greater than post‐zygotic isolation, in accordance with the trend observed in flowering plants in which reproductive isolation is principally caused by pre‐zygotic mechanisms. However, average post‐zygotic isolation was also high, in contrast to what was expected among Antirrhinum spp. This case highlights the importance of quantifying the reproductive isolation barriers thoroughly to understand how and why species boundaries are maintained. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 159–172.  相似文献   

3.
Speciation is typically accompanied by the formation of isolation barriers between lineages. Commonly, reproductive barriers are separated into pre‐ and post‐zygotic mechanisms that can evolve with different speed. In this study, we measured the strength of different reproductive barriers in two closely related, sympatric orchids of the Ophrys insectifera group, namely Ophrys insectifera and Ophrys aymoninii to infer possible mechanisms of speciation. We quantified pre‐ and post‐pollination barriers through observation of pollen flow, by performing artificial inter‐ and intraspecific crosses and analyzing scent bouquets. Additionally, we investigated differences in mycorrhizal fungi as a potential extrinsic factor of post‐zygotic isolation. Our results show that floral isolation mediated by the attraction of different pollinators acts apparently as the sole reproductive barrier between the two orchid species, with later‐acting intrinsic barriers seemingly absent. Also, the two orchids share most of their fungal mycorrhizal partners in sympatry, suggesting little or no importance of mycorrhizal symbiosis in reproductive isolation. Key traits underlying floral isolation were two alkenes and wax ester, present predominantly in the floral scent of O. aymoninii. These compounds, when applied to flowers of O. insectifera, triggered attraction and a copulation attempt of the bee pollinator of O. aymoninii and thus led to the (partial) breakdown of floral isolation. Based on our results, we suggest that adaptation to different pollinators, mediated by floral scent, underlies species isolation in this plant group. Pollinator switches may be promoted by low pollination success of individuals in dense patches of plants, an assumption that we also confirmed in our study.  相似文献   

4.
Many modern crop varieties rely on animal pollination to set fruit and seeds. Intensive crop plantations usually do not provide suitable habitats for pollinators so crop yield may depend on the surrounding vegetation to maintain pollination services. However, little is known about the effect of pollinator‐mediated interactions among co‐flowering plants on crop yield or the underlying mechanisms. Plant reproductive success is complex, involving several pre‐ and post‐pollination events; however, the current literature has mainly focused on pre‐pollination events in natural plant communities. We assessed pollinator sharing and the contribution to pollinator diet in a community of wild and cultivated plants that co‐flower with a focal papaya plantation. In addition, we assessed heterospecific pollen transfer to the stigmatic loads of papaya and its effect on fruit and seed production. We found that papaya shared at least one pollinator species with the majority of the co‐flowering plants. Despite this, heterospecific pollen transfer in cultivated papaya was low in open‐pollinated flowers. Hand‐pollination experiments suggest that heterospecific pollen transfer has no negative effect on fruit production or weight, but does reduce seed production. These results suggest that co‐flowering plants offer valuable floral resources to pollinators that are shared with cultivated papaya with little or no cost in terms of heterospecific pollen transfer. Although HP reduced seed production, a reduced number of seeds per se are not negative, given that from an agronomic perspective the number of seeds does not affect the monetary value of the papaya fruit.  相似文献   

5.
Species integrity relies on the maintenance of reproductive isolation, particularly between closely related species. Further, it has been hypothesized that the presence of heterospecific pollen on flower stigmas adversely affects plant reproduction with increasing effect in closely related species. Using two pairs of co‐occurring buzz‐pollinated Thysanotus spp. in the Mediterranean climate region of Perth, Western Australia, we quantified the effect of heterospecific pollen on fruit and seed set. We first determined the mating systems of the two focal species using self‐ and outcross pollen, followed by separate treatments with heterospecific pollen within each species pair. Of the two species receiving pollen, Thysanotus triandrus had a mixed mating system, but with significantly lower fruit and seed set from self‐pollen relative to outcross pollen. Thysanotus tenellus was autogamous with no difference in fruit or seed set between autogamous, self‐ or outcross pollinations. Heterospecific pollen had no effect on fruit or seed set of either focal species. These outcomes point to post‐pollination reproductive isolation, consistent with a floral morphology that causes low specificity of pollen placement and thus a poor capacity for pre‐pollination discrimination. Negative effects of heterospecific pollen, therefore, do not appear to play a role in the reproduction in this group of buzz‐pollinated flowers.  相似文献   

6.
Pollination biology, breeding system, and floral phenology of the columnar cactus Stenocereus stellatus were studied in wild, wild managed in situ and cultivated populations of central Mexico, in order to examine whether these aspects have been modified under domestication and whether they determine reproductive barriers between wild and manipulated individuals. Individuals of both wild and manipulated populations are self-incompatible, indicating that artificial selection has not modified the breeding system. Their pollination biology is also similar. Anthesis is mainly nocturnal, with a peak of nectar production between 0200 and 0400 when the stigma presents maximum turgidity. Nocturnal visitors are the effective pollinators. Nearly 75% of flowers exposed for nocturnal pollination set fruit, while none of the flowers exposed for diurnal pollination produced fruits. The bats Leptonycteris curasoae, L. nivalis, and Choeronycteris mexicana (Glossophaginae) are the most likely pollinators, and their time of foraging is synchronized with the time of nectar production and stigma receptivity in S. stellatus. Bats potentially move pollen over a considerable distance, so there is apparently no spatial isolation to prevent pollen exchange between wild and cultivated populations. Phenological studies showed that there are also no apparent temporal barriers. However, manual cross pollination failed between some domesticated and wild phenotypes, suggesting that gene flow between wild and cultivated populations might be limited by pollen incompatibility.  相似文献   

7.
  • Opuntia (Cactaceae) is known for high rates of hybridization and ploidisation, resulting in the formation of new species. The occurrence of two sympatric and closely related species of Opuntia, O. elata and O. retrorsa, in Brazilian Chaco enabled us to test the hypothesis that pre‐zygotic reproductive isolation mechanisms operate in both species.
  • We monitored the flowering period, as well as floral biology, and compared the morphological variation of floral structures through measurements, performed intra‐ and interspecific cross‐pollination tests, and recorded the guild of floral visitors and pollinators.
  • Flowering was seasonal and highly synchronous. Floral biology exhibits similar strategies, and although floral morphology differs significantly in many of the compared structures, such morphological variation does not result in the selection of exclusive pollinators. Floral visitors and pollinators are oligolectic bees shared by both species. Opuntia elata and O. retrorsa are self‐compatible. While interspecific cross‐pollination (bidirectional) resulted in germination, the pollen tube did not penetrate the stigma.
  • Opuntia elata and O. retrorsa are closely related; however, they are isolated and do not hybridise in Brazilian Chaco. We found that both have weak pre‐pollination barriers, but that they are strongly isolated by pollen–pistil incompatibility, i.e. post‐pollination barrier.
  相似文献   

8.
Speciation occurs when reproductive barriers substantially reduce gene flow between lineages. Understanding how specific barriers contribute to reproductive isolation offers insight into the initial forces driving divergence and the evolutionary and ecological processes responsible for maintaining diversity. Here, we quantified multiple pre‐ and post‐pollination isolating barriers in a pair of closely related California Jewelflowers (Streptanthus, Brassicaceae) living in an area of sympatry. S. breweri and S. hesperidis are restricted to similar serpentine habitats; however, populations are spatially isolated at fine‐scales and rarely co‐occur in intermixed stands. Several intrinsic postzygotic barriers were among the strongest we quantified, yet, postzygotic barriers currently contribute little to overall reproductive isolation due to the cumulative strength of earlier‐acting extrinsic barriers, including spatial isolation, and flowering time and pollinator differences. Data from multiple years suggest that pre‐pollination barriers may have different strengths depending on annual environmental conditions. Similarly, crossing data suggest that the strength of intrinsic isolation may vary among different population pairs. Estimates of total reproductive isolation in S. breweri and S. hesperidis are robust to uncertainty and variability in individual barrier strength estimates, demonstrating how multiple barriers can act redundantly to prevent gene flow between close relatives living in sympatry.  相似文献   

9.
  • The interaction of plants with pollinators can be a determinant of their reproductive fitness. However, information about the pollination biology of carnivorous plants is scarce. To increase knowledge of reproductive ecology of carnivorous plants we focused on Pinguicula moranensis. Specifically, based on the presence of large, zygomorphic and spurred flowers, we predicted higher reproductive fitness in cross‐pollinated than in self‐pollinated flowers.
  • Within a plot of 51 m2 we characterised the reproductive phenology, including flower lifespan and stigmatic receptivity. We identified pollinators and their movement patterns within the plot. Breeding system was experimentally evaluated using hand‐pollination (i.e. autonomous, self‐ and cross‐pollination).
  • Flowers of P. moranensis were visited by long‐tongued pollinators, mainly members of the Lepidoptera. Hand‐pollination experiments confirmed our prediction and suggest that flower traits might favour cross‐pollination.
  • We mainly discuss the implications of the patchy distribution of plants and behaviour of pollinators on gene movement in this plant species, as pollination between genetically related individuals could be occurring.
  相似文献   

10.
11.
Flowering plants do not occur alone and often grow in mixed‐species communities where pollinator sharing is high and interactions via pollinators can occur at pre‐ and post‐pollination stages. While the causes and consequences of pre‐pollination interactions have been well studied little is known about post‐pollination interactions via heterospecific pollen (HP) receipt, and even less about the evolutionary implications of these interactions. In particular, the degree to which plants can evolve tolerance mechanisms to the negative effects of HP receipt has received little attention. Here, we aim to fill this gap in our understanding of post‐pollination interactions by experimentally testing whether two co‐flowering Clarkia species can evolve HP tolerance, and whether tolerance to specific HP ‘genotypes’ (fine‐scale local adaptation to HP) occurs. We find that Clarkia species vary in their tolerance to HP effects. Furthermore, conspecific pollen performance and the magnitude of HP effects were related to the recipient's history of exposure to HP in C. xantiana but not in C. speciosa. Specifically, better conspecific pollen performance and smaller HP effects were observed in populations of C. xantiana plants with previous exposure to HP compared to populations without such exposure. These results suggest that plants may have the potential to evolve tolerance mechanisms to HP effects but that these may occur not from the female (stigma, style) but from the male (pollen) perspective, a possibility that is often overlooked. We find no evidence for fine‐scale local adaptation to HP receipt. Studies that evaluate the adaptive potential of plants to the negative effects of HP receipt are an important first step in understanding the evolutionary consequences of plant–plant post‐pollination interactions. Such knowledge is in turn crucial for deciphering the role of plant–pollinator interactions in driving floral evolution and the composition of co‐flowering communities.  相似文献   

12.
The interaction between floral traits and reproductive isolation is crucial to explaining the extraordinary diversity of angiosperms. Heterostyly, a complex floral polymorphism that optimizes outcrossing, evolved repeatedly and has been shown to accelerate diversification in primroses, yet its potential influence on isolating mechanisms remains unexplored. Furthermore, the relative contribution of pre‐ versus postmating barriers to reproductive isolation is still debated. No experimental study has yet evaluated the possible effects of heterostyly on pre‐ and postmating reproductive mechanisms. We quantify multiple reproductive barriers between the heterostylous Primula elatior (oxlip) and P. vulgaris (primrose), which readily hybridize when co‐occurring, and test whether traits of heterostyly contribute to reproductive barriers in unique ways. We find that premating isolation is key for both species, while postmating isolation is considerable only for P. vulgaris; ecogeographic isolation is crucial for both species, while phenological, seed developmental, and hybrid sterility barriers are also important in P. vulgaris, implicating sympatrically higher gene flow into P. elatior. We document for the first time that, in addition to the aforementioned species‐dependent asymmetries, morph‐dependent asymmetries affect reproductive barriers between heterostylous species. Indeed, the interspecific decrease of reciprocity between high sexual organs of complementary floral morphs limits interspecific pollen transfer from anthers of short‐styled flowers to stigmas of long‐styled flowers, while higher reciprocity between low sexual organs favors introgression over isolation from anthers of long‐styled flowers to stigmas of short‐styled flowers. Finally, intramorph incompatibility persists across species boundaries, but is weakened in long‐styled flowers of P. elatior, opening a possible backdoor to gene flow through intramorph pollen transfer between species. Therefore, patterns of gene flow across species boundaries are likely affected by floral morph composition of adjacent populations. To summarize, our study highlights the general importance of premating isolation and newly illustrates that both morph‐ and species‐dependent asymmetries shape boundaries between heterostylous species.  相似文献   

13.
Multiple factors determine plant reproductive success and their influence may vary spatially. This study addresses several factors influencing female reproductive success in three populations of Ruellia nudiflora, specifically we: (i) determine if fruit set is pollen‐limited and if pollinator visitation rates are related to this condition; (ii) estimate fruit set via autonomous self‐pollination (AS) and relate it to the magnitude of herkogamy; and (iii) evaluate if fruit abortion is a post‐pollination mechanism that determines the magnitude of pollen limitation. At each site we marked 35 plants, grouped as: unmanipulated control (C) plants subjected to open pollination, plants manually cross‐pollinated (MP), and plants excluded from pollinators and only able to self‐pollinate autonomously (AS). Fruit set was greater for MP relative to C plants providing evidence for pollen limitation, while a tendency was observed for lower fruit abortion of MP relative to C plants suggesting that fruit set is influenced not only by pollen delivery per se, but also by subsequent abortion. In addition, although pollinator visits varied significantly among populations, the magnitude of pollen limitation did not, suggesting that pollinator activity was not relevant in determining pollen limitation. Finally, fruit set tended to decrease with the degree of herkogamy for AS plants, but this result was inconclusive. These findings have contributed to identify which factors influence reproductive success in populations of R. nudiflora, with potentially relevant implications for population genetic structure and mating system evolution of this species.  相似文献   

14.
  • Triplaris gardneriana (Polygonaceae) is a dioecious pioneer tree reported as insect‐pollinated, despite possessing traits related to anemophily. Here, we analyse the possible roles of insects and wind on the pollination of this species to establish whether the species is ambophilous.
  • We carried out observations of floral biology, as well as on the frequency and behaviour of pollinators visiting flowers in a population of T. gardneriana in the Chaco vegetation of Brazil. We conducted experimental pollinations to determine the maternal fertility of female plants and whether they were pollen‐limited, and we also conducted aerobiological experiments to provide evidence of how environmental factors influence atmospheric pollen dispersal.
  • The population comprised an area of approximately 152.000 m2 and was composed of 603 female and 426 male plants (sex ratio = 0.59:0.41). We observed 48 species of insects visiting flowers of Tgardneriana, of which the bees Scaptotrigona depilis and Apis mellifera scutellata were the most effective pollinators. We recorded pollen grains dispersed by wind on 74% of the glass slides placed on females, located at different distances (1–10 m) from male plants.
  • Airborne pollen concentration was negatively correlated with relative humidity and positively correlated with temperature. Our observations and experimental results provide the first evidence that T. gardneriana is an ambophilous species, with pollen dispersal resulting from both animal and wind pollination. This mixed pollination strategy may be adaptive in T. gardneriana providing reproductive assurance during colonisation of sites with different biotic and abiotic conditions.
  相似文献   

15.
Tetraploid lineages are typically reproductively isolated from their diploid ancestors by post‐zygotic isolation via triploid sterility. Nevertheless, polyploids often also exhibit ecological divergence that could contribute to reproductive isolation from diploid ancestors. In this study, we disentangled the contribution of different forms of reproductive isolation between sympatric diploid and autotetraploid individuals of the food‐deceptive orchid Anacamptis pyramidalis by quantifying the strength of seven reproductive barriers: three prepollination, one post‐pollination prezygotic and three post‐zygotic. The overall reproductive isolation between the two cytotypes was found very high, with a preponderant contribution of two prepollination barriers, that is phenological and microhabitat differences. Although the contribution of post‐zygotic isolation (triploid sterility) is confirmed in our study, these results highlight that prepollination isolation, not necessarily involving pollinator preference, can represent a strong component of reproductive isolation between different cytotypes. Thus, in the context of polyploidy as quantum speciation, that generates reproductive isolation via triploid sterility, ecological divergence can strengthen the reproductive isolation between cytotypes, reducing the waste of gametes in low fitness interploidy crosses and thus favouring the initial establishment of the polyploid lineage. Under this light, speciation by polyploidy involves ecological processes and should not be strictly considered as a nonecological form of speciation.  相似文献   

16.
  • Domestication might affect plant size. We investigated whether herbaceous crops are larger than their wild progenitors, and the traits that influence size variation.
  • We grew six crop plants and their wild progenitors under common garden conditions. We measured the aboveground biomass gain by individual plants during the vegetative stage. We then tested whether photosynthesis rate, biomass allocation to leaves, leaf size and specific leaf area (SLA) accounted for variations in whole‐plant photosynthesis, and ultimately in aboveground biomass.
  • Despite variations among crops, domestication generally increased the aboveground biomass (average effect +1.38, Cohen's d effect size). Domesticated plants invested less in leaves and more in stems than their wild progenitors. Photosynthesis rates remained similar after domestication. Variations in whole‐plant C gains could not be explained by changes in leaf photosynthesis. Leaves were larger after domestication, which provided the main contribution to increases in leaf area per plant and plant‐level C gain, and ultimately to larger aboveground biomass.
  • In general, cultivated plants have become larger since domestication. In our six crops, this occurred despite lower investment in leaves, comparable leaf‐level photosynthesis and similar biomass costs of leaf area (i.e. SLA) than their wild progenitors. Increased leaf size was the main driver of increases in aboveground size. Thus, we suggest that large seeds, which are also typical of crops, might produce individuals with larger organs (i.e. leaves) via cascading effects throughout ontogeny. Larger leaves would then scale into larger whole plants, which might partly explain the increases in size that accompanied domestication.
  相似文献   

17.
  • Self‐pollination by geitonogamy is likely in self‐compatible plants that simultaneously expose a large number of flowers to pollinators. However, progeny of these plants is often highly allogamous. Although mechanisms to increase cross‐pollination have been identified and studied, their relative importance has rarely been addressed simultaneously in plant populations.
  • We used Rosmarinus officinalis to explore factors that influence the probability of self‐fertilisation due to geitonogamy or that purge its consequences, focusing on their effects on seed germination and allogamy rate. We experimentally tested the effect of geitonogamy on the proportion of filled seeds and how it influences germination rate. During two field seasons, we studied how life history and flowering traits of individuals influence seed germination and allogamy rates of their progeny in wild populations at the extremes of the altitudinal range. The traits considered were plant size, population density, duration of the flowering season, number of open flowers, flowering synchrony among individuals within populations and proportion of male‐sterile flowers.
  • We found that most seeds obtained experimentally from self‐pollination were apparently healthy but empty, and that the proportion of filled seeds drove the differences in germination rate between self‐ and cross‐pollination experiments. Plants from wild populations consistently had low germination rate and high rate of allogamy, as determined with microsatellites. Germination rate related positively to the length of the flowering season, flowering synchrony and the ratio of male‐sterile flowers, whereas the rate of allogamous seedlings was positively related only to the ratio of male‐sterile flowers.
  • Rosemary plants purge most of the inbreeding caused by its pollination system by aborting the seeds. This study showed that the rates of seed germination and allogamy of the seedlings depend on a complex combination of factors that vary in space and time. Male sterility of flowers, length of the flowering season and flowering synchrony of individuals within populations all favour high rates of cross‐pollination, therefore increasing germination and allogamy rates. Flowering traits appear to be highly plastic and respond to local and seasonal conditions.
  相似文献   

18.
19.
The crucial role of reproductive isolation in speciation has long been recognized; however, a limited number of studies quantify different isolation barriers and embed reproductive isolation in a phylogenetic context. In this study, we investigate reproductive isolation between the often sympatrically occurring orchid species, Gymnadenia conopsea and G. odoratissima. We examine the phylogenetic relationship between the two species and analyse floral isolation, fruit set and seed viability from interspecies crosses, as well as the ploidy level. Additionally, we quantify interspecies differences in floral signals and morphology. The results suggest that the two species have a sister–species relationship. In terms of reproductive isolation, we found complete floral isolation between the two species, but little to no post‐pollination isolation; the species also mostly had the same ploidy level in the studied populations. We also show clear distinctions in floral signals, as well as in floral size and spur length. We propose that respective adaptation to short‐ vs. long‐tongued pollinators was the driver of speciation in the here studied Gymnadenia species. Our study supports the key role of floral isolation in orchid speciation and shows that floral isolation is not restricted to highly specialized pollination systems, but can also occur between species with less specialized pollination.  相似文献   

20.
In speciation research, much attention is paid to the evolution of reproductive barriers, preventing diverging groups from hybridizing back into one gene pool. The prevalent view is that reproductive barriers evolve gradually as a by‐product of genetic changes accumulated by natural selection and genetic drift in groups that are segregated spatially and/or temporally. Reproductive barriers, however, can also be reinforced by natural selection against maladaptive hybridization. These mutually compatible theories are both empirically supported by studies, analysing relationships between intensity of reproductive isolation and genetic distance in sympatric taxa and allopatric taxa. Here, we present the – to our knowledge – first comparative study in a haplodiploid organism, the social spider mite Stigmaeopsis miscanthi, by measuring premating and post‐mating, pre‐ and post‐zygotic components of reproductive isolation, using three recently diverged forms of the mite that partly overlap in home range. We carried out cross‐experiments and measured genetic distances (mitochondrial DNA and nuclear DNA) among parapatric and allopatric populations of the three forms. Our results show that the three forms are reproductively isolated, despite the absence of premating barriers, and that the post‐mating, prezygotic component contributes most to reproductive isolation. As expected, the strength of post‐mating reproductive barriers positively correlated with genetic distance. We did not find a clear pattern of prezygotic barriers evolving faster in parapatry than in allopatry, although one form did show a trend in line with the ecological and behavioural relationships between the forms. Our study advocates the versatility of haplodiploid animals for investigating the evolution of reproductive barriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号