首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We sampled Palaearctic naked‐toed geckos from across their range in India and used two mitochondrial and two nuclear genes to reconstruct relationships within a global phylogeny. Published sequences of Peninsular Indian Hemidactylus allow us to contrast these two groups in dating analyses – providing insights into the history of the Indian dry zone. Palaearctic naked‐toed geckos first moved onto the Indian Plate in the Oligocene, with higher‐level diversification probably linked to collision of the Indian and Eurasian plates, and subsequent dispersal into‐India and diversification with increasing Miocene aridity. An independent gekkonid radiation with species in the dry zone, Hemidactylus diversified during the same period in Peninsular India. Our results demonstrate that dry zone taxa across India may date back to at least the Miocene, with a potential historical climatic barrier between the Indus and Peninsular Indian Divisions. ‘Cyrtopodionaravallense is revealed to be a complex with seven genetically and environmentally divergent lineages that began diversifying in the late Miocene, congruent with increased aridity in north‐western India. This discovery of cryptic diversity in the Indian dry zone represents the first terrestrial vertebrate radiation from north‐western central India and highlights how little we understand of the regions’ biodiversity, emphasizing the need for systematic geographic sampling and multiline evidence to reveal true patterns of diversity. The ancestor of ‘Cyrtopodion’ aravallense came into the nascent Indian dry zone in the Miocene and has since diversified, potentially in the absence of any sympatric scansorial rupicolous geckos. Cyrtopodion scabrum represents a unique case of commensalism and shows phylogeographic structure in its presumed native range. The taxonomic implications of our study include a number of undescribed species, recognition of ‘Cyrtopodion’ as a distinct lineage and the non‐monophyly of Altiphylax.  相似文献   

2.
Phylogeny of birch mice is estimated using sequences of ten nuclear genes and one mitochondrial gene. Based on the results of tree reconstructions and molecular dating, five major lineages are recognized: “tianschanica,” “concolor,” “caudata,” “betulina,” and “caucasica.” It is established that the three latter lineages constitute a clade and that the long‐tailed birch mouse Sicista caudata is the sister group of the “caucasica” lineage. The “tianschanica” lineage is placed as the sister branch to all other species, however, with insufficient support. The cytochrome b tree is generally concordant with the nuclear topology. The molecular clock results suggest that the radiation among the main lineages occurred in the Late Miocene–Early Pliocene (6.0–4.7 Mya). The correspondence between molecular dating and the fossil record is discussed. Based on nuclear data, a high level of divergence between cryptic species in the “tianschanica” lineage is confirmed. Mitochondrial and nuclear data suggest the existence of a potential cryptic species within Sicista strandi.  相似文献   

3.
Dated molecular phylogenetic trees show that the Andean uplift had a major impact on South American biodiversity. For many Andean groups, accelerated diversification (radiation) has been documented. However, not all Andean lineages appear to have diversified following the model of rapid radiation, particularly in the central and southern Andes. Here, we investigated the diversification patterns for the largest South American‐endemic lineage of Brassicaceae, composed of tribes Cremolobeae, Eudemeae and Schizopetaleae (CES clade). Species of this group inhabit nearly all Andean biomes and adjacent areas including the Atacama–Sechura desert, the Chilean Matorral and the Patagonian Steppe. First, we studied diversification times and historical biogeography of the CES clade. Second, we analysed diversification rates through time, lineages and associated life forms. Results demonstrate that early diversification of the CES clade occurred in the early to mid‐Miocene (c. 12–19 Mya) and involved the central Andes, the southern Andes and the Patagonian Steppe, and the Atacama–Sechura desert. The Chilean Matorral and northern Andes were colonized subsequently in the early Pliocene (4–5 Mya). Diversification of the CES clade was recovered as a gradual process without any evidence for rate shifts or rapid radiation, in contrast to many other Andean groups analysed so far. Diversification time/rates and biogeographical patterns obtained for the CES clade are discussed and compared with patterns and conclusions reported for other Andean plant lineages.  相似文献   

4.
Ants are one of the most ecologically and numerically dominant group of terrestrial organisms with most species diversity currently found in tropical climates. Several explanations for the disparity of biological diversity in the tropics compared to temperate regions have been proposed including that the tropics may act as a “museum” where older lineages persist through evolutionary time or as a “cradle” where new species continue to be generated. We infer the molecular phylogenetic relationships of 295 ant specimens including members of all 21 extant subfamilies to explore the evolutionary diversification and biogeography of the ants. By constraining the topology and age of the root node while using 45 fossils as minimum constraints, we converge on an age of 139–158 Mya for the modern ants. Further diversification analyses identified 10 periods with a significant change in the tempo of diversification of the ants, although these shifts did not appear to correspond to ancestral biogeographic range shifts. Likelihood‐based historical biogeographic reconstructions suggest that the Neotropics were important in early ant diversification (e.g., Cretaceous). This finding coupled with the extremely high‐current species diversity suggests that the Neotropics have acted as both a museum and cradle for ant diversity.  相似文献   

5.
Despite its ancient origin, global distribution and abundance in nearly all habitats, the class Collembola is comprised of only 8000 described species and is estimated to number no more than 50 000. Many morphologically defined species have broad geographical ranges that span continents, and recent molecular work has revealed high genetic diversity within species. However, the evolutionary significance of this genetic diversity is unknown. In this study, we sample five morphological species of the globally distributed genus Lepidocyrtus from 14 Panamanian sampling sites to characterize genetic diversity and test morphospecies against the biological species concept. Mitochondrial and nuclear DNA sequence data were analysed and a total of 58 molecular lineages revealed. Deep lineage diversification was recovered, with 30 molecular lineages estimated to have established more than 10 million years ago, and the origin almost all contemporary lineages preceding the onset of the Pleistocene (~2 Mya). Thirty‐four lineages were sampled in sympatry revealing unambiguous cosegregation of mitochondrial and nuclear DNA sequence variation, consistent with biological species. Species richness within the class Collembola and the geographical structure of this diversity are substantially misrepresented components of terrestrial animal biodiversity. We speculate that global species richness of Collembola could be at least an order of magnitude greater than a previous estimate of 50 000 species.  相似文献   

6.
When novel sources of ecological opportunity are available, physiological innovations can trigger adaptive radiations. This could be the case of yeasts (Saccharomycotina), in which an evolutionary novelty is represented by the capacity to exploit simple sugars from fruits (fermentation). During adaptive radiations, diversification and morphological evolution are predicted to slow‐down after early bursts of diversification. Here, we performed the first comparative phylogenetic analysis in yeasts, testing the “early burst” prediction on species diversification and also on traits of putative ecological relevance (cell‐size and fermentation versatility). We found that speciation rates are constant during the time‐range we considered (ca., 150 millions of years). Phylogenetic signal of both traits was significant (but lower for cell‐size), suggesting that lineages resemble each other in trait‐values. Disparity analysis suggested accelerated evolution (diversification in trait values above Brownian Motion expectations) in cell‐size. We also found a significant phylogenetic regression between cell‐size and fermentation versatility (R2 = 0.10), which suggests correlated evolution between both traits. Overall, our results do not support the early burst prediction both in species and traits, but suggest a number of interesting evolutionary patterns, that warrant further exploration. For instance, we show that the Whole Genomic Duplication that affected a whole clade of yeasts, does not seems to have a statistically detectable phenotypic effect at our level of analysis. In this regard, further studies of fermentation under common‐garden conditions combined with comparative analyses are warranted.  相似文献   

7.
Understanding the history that underlies patterns of species richness across the Tree of Life requires an investigation of the mechanisms that not only generate young species‐rich clades, but also those that maintain species‐poor lineages over long stretches of evolutionary time. However, diversification dynamics that underlie ancient species‐poor lineages are often hidden due to a lack of fossil evidence. Using information from the fossil record and time calibrated molecular phylogenies, we investigate the history of lineage diversification in Polypteridae, which is the sister lineage of all other ray‐finned fishes (Actinopterygii). Despite originating at least 390 million years (Myr) ago, molecular timetrees support a Neogene origin for the living polypterid species. Our analyses demonstrate polypterids are exceptionally species depauperate with a stem lineage duration that exceeds 380 million years (Ma) and is significantly longer than the stem lineage durations observed in other ray‐finned fish lineages. Analyses of the fossil record show an early Late Cretaceous (100.5–83.6 Ma) peak in polypterid genus richness, followed by 60 Ma of low richness. The Neogene species radiation and evidence for high‐diversity intervals in the geological past suggest a “boom and bust” pattern of diversification that contrasts with common perceptions of relative evolutionary stasis in so‐called “living fossils.”  相似文献   

8.
Simpson's “early burst” model of adaptive radiation was intended to explain the early proliferation of morphological and functional variation in diversifying clades. Yet, despite much empirical testing, questions remain regarding its frequency across the tree of life. Here, we evaluate the support for an early burst model of adaptive radiation in 14 ecomorphological traits plus body mass for the extant mammalian order Carnivora and its constituent families. We find strong support for early bursts of dental evolution, suggesting a classic Simpsonian adaptive radiation along dietary resource axes. However, the signal of this early burst is not consistently recovered in analyses at the family level, where support for a variety of different models emerges. Furthermore, we find no evidence for early burst–like dynamics in size–related traits, and Bayesian analyses of evolutionary correlations corroborate a decoupling of size and dental evolution, driven in part by dietary specialization. Our results are consistent with the perspective that trait diversification unfolds hierarchically, with early bursts restricted to traits associated with higher level niches, such as macrohabitat use or dietary strategy, and thus with the origins of higher taxa. The lack of support for early burst adaptive radiation in previous phylogenetic studies may be a consequence of focusing on low‐level niche traits (i.e., those associated with microhabitat use) in clades at shallow phylogenetic levels. A richer understanding of early burst adaptive radiation will require a renewed focus on functional traits and their evolution over higher level clades.  相似文献   

9.
An important dimension of adaptive radiation is the degree to which diversification rates fluctuate or remain constant through time. Focusing on plethodontid salamanders of the genus Desmognathus, we present a novel synthetic analysis of phylogeographic history, rates of ecomorphological evolution and species accumulation, and community assembly in an adaptive radiation. Dusky salamanders are highly variable in life history, body size, and ecology, with many endemic lineages in the southern Appalachian Highlands of eastern North America. Our results show that life-history evolution had important consequences for the buildup of plethodontid-salamander species richness and phenotypic disparity in eastern North America, a global hot spot of salamander biodiversity. The origin of Desmognathus species with aquatic larvae was followed by a high rate of lineage accumulation, which then gradually decreased toward the present time. The peak period of lineage accumulation in the group coincides with evolutionary partitioning of lineages with aquatic larvae into seepage, stream-edge, and stream microhabitats. Phylogenetic simulations demonstrate a strong correlation between morphology and microhabitat ecology independent of phylogenetic effects and suggest that ecomorphological changes are concentrated early in the radiation of Desmognathus. Deep phylogeographic fragmentation within many codistributed ecomorph clades suggests long-term persistence of ecomorphological features and stability of endemic lineages and communities through multiple climatic cycles. Phylogenetic analyses of community structure show that ecomorphological divergence promotes the coexistence of lineages and that repeated, independent evolution of microhabitat-associated ecomorphs has a limited role in the evolutionary assembly of Desmognathus communities. Comparing and contrasting our results to other adaptive radiations having different biogeographic histories, our results suggest that rates of diversification during adaptive radiation are intimately linked to the degree to which community structure persists over evolutionary time.  相似文献   

10.
The accumulation of exceptional ecological diversity within a lineage is a key feature of adaptive radiation resulting from diversification associated with the subdivision of previously underutilized resources. The invasion of unoccupied niche space is predicted to be a key determinant of adaptive diversification, and this process may be particularly important if the diversity of competing lineages within the area, in which the radiation unfolds, is already high. Here, we test whether the evolution of nectarivory resulted in significantly higher rates of morphological evolution, more extensive morphological disparity, and a heightened build‐up of sympatric species diversity in a large adaptive radiation of passerine birds (the honeyeaters, about 190 species) that have diversified extensively throughout continental and insular settings. We find that a large increase in rates of body size evolution and general expansion in morphological space followed an ancestral shift to nectarivory, enabling the build‐up of large numbers of co‐occurring species that vary greatly in size, compared to related and co‐distributed nonnectarivorous clades. These results strongly support the idea that evolutionary shifts into novel areas of niche space play a key role in promoting adaptive radiation in the presence of likely competing lineages.  相似文献   

11.
Adaptive radiation (AR), the product of rapid diversification of an ancestral species into novel adaptive zones, has become pivotal in our understanding of biodiversity. Although it has widely been accepted that predators may drive the process of AR by creating ecological opportunity (e.g., enemy‐free space), the role of predators as selective agents in defensive trait diversification remains controversial. Using phylogenetic comparative methods, we provide evidence for an “early burst” in the diversification of antipredator phenotypes in Cordylinae, a relatively small AR of morphologically diverse southern African lizards. The evolution of body armor appears to have been initially rapid, but slowed down over time, consistent with the ecological niche‐filling model. We suggest that the observed “early burst” pattern could be attributed to shifts in vulnerability to different types of predators (i.e., aerial versus terrestrial) associated with thermal habitat partitioning. These results provide empirical evidence supporting the hypothesis that predators or the interaction therewith might be key components of ecological opportunity, although the way in which predators influence morphological diversification requires further study.  相似文献   

12.
Conceptual models of adaptive radiation predict that competitive interactions among species will result in an early burst of speciation and trait evolution followed by a slowdown in diversification rates. Empirical studies often show early accumulation of lineages in phylogenetic trees, but usually fail to detect early bursts of phenotypic evolution. We use an evolutionary simulation model to assemble food webs through adaptive radiation, and examine patterns in the resulting phylogenetic trees and species' traits (body size and trophic position). We find that when foraging trade-offs result in food webs where all species occupy integer trophic levels, lineage diversity and trait disparity are concentrated early in the tree, consistent with the early burst model. In contrast, in food webs in which many omnivorous species feed at multiple trophic levels, high levels of turnover of species' identities and traits tend to eliminate the early burst signal. These results suggest testable predictions about how the niche structure of ecological communities may be reflected by macroevolutionary patterns.  相似文献   

13.
The evolution of Neotropical birds of open landscapes remains largely unstudied. We investigate the diversification and biogeography of a group of Neotropical obligate grassland birds (Anthus: Motacillidae). We use a multilocus phylogeny of 22 taxa of Anthus to test the hypothesis that these birds radiated contemporaneously with the development of grasslands in South America. We employ the R package DDD to analyze the dynamics of Anthus diversification across time in Neotropical grasslands, explicitly testing for shifts in dynamics associated with the Miocene development of grasslands, the putative Pleistocene expansion of arid lowland biomes, and Pleistocene sundering of Andean highland grasslands. A lineage‐through‐time plot revealed increases in the number of lineages, and DDD detected shifts to a higher clade‐level carrying capacity during the late Miocene, indicating an early burst of diversification associated with grassland colonization. However, we could not corroborate the shift using power analysis, probably reflecting the small number of tips in our tree. We found evidence of a divergence at ~1 Mya between northern and southern Amazonian populations of Anthus lutescens, countering Haffer's idea of Pleistocene expansion of open biomes in the Amazon Basin. We used BioGeoBears to investigate ancestral areas and directionality of colonization of Neotropical grasslands. Members of the genus diversified into, out of, and within the Andes, within‐Andean diversification being mostly Pleistocene in origin.  相似文献   

14.
The Gammaridae shows the greatest disparity in species diversity and distribution pattern in the Amphipoda, with some genera ranging from the Palearctic to Nearctic, while others are limited to the Mediterranean region or ancient Tethyan margins. Here we present the first molecular phylogenetic analysis of the Gammaridae to investigate its evolutionary history using four genetic markers and a comprehensive set of taxa representing 198 species. The phylogenetic results revealed that the Gammaridae originated from the Tethyan region in the Cretaceous, and split into three morphologically and geographically distinct lineages by the end of the Paleocene. Diversification analysis combined with paleogeological evidence suggested that the Tethyan changes induced by sea‐level fluctuation and tectonic uplift triggered different diversification modes and range expansions for the three lineages. The Gammarus lineage underwent an early rapid radiation across Eurasia and North America, then declined towards modern species. Pontogammarids maintained stable diversification with restricted distributions around the Tethyan basin, whereas sarothrogammarids experienced evolutionary stasis by stranding on the ancient Tethyan margins. Our findings suggest that environmental changes have played an important role in the diversification of Gammaridae lineages, which could be an opportunity to promote adaptive radiations in new habitats, or constraints resulting in evolutionary relicts.  相似文献   

15.
Ecological opportunity is often proposed as a driver of accelerated diversification, but evidence has been largely derived from either contemporary island radiations or the fossil record. Here, we investigate the potential influence of ecological opportunity on a transcontinental radiation of South American freshwater fishes. We generate a species‐dense, time‐calibrated molecular phylogeny for the suckermouth armored catfish subfamily Hypostominae, with a focus on the species‐rich and geographically widespread genus Hypostomus. We use the resulting chronogram to estimate ancestral geographical ranges, infer historical rates of cladogenesis and diversification in habitat and body size and shape, and test the hypothesis that invasions of previously unoccupied river drainages accelerated evolution and contributed to adaptive radiation. Both the subfamily Hypostominae and the included genus Hypostomus originated in the Amazon/Orinoco ecoregion. Hypostomus subsequently dispersed throughout tropical South America east of the Andes Mountains. Consequent to invasion of the peripheral, low‐diversity Paraná River basin in southeastern Brazil approximately 12.5 Mya, Paraná lineages of Hypostomus, experienced increased rates of cladogenesis and ecological and morphological diversification. Contemporary lineages of Paraná Hypostomus are less species rich but more phenotypically diverse than their congeners elsewhere. Accelerated speciation and morphological diversification rates within Paraná basin Hypostomus are consistent with adaptive radiation. The geographical remoteness of the Paraná River basin, its recent history of marine incursion, and its continuing exclusion of many species that are widespread in other tropical South American rivers suggest that ecological opportunity played an important role in facilitating the observed accelerations in diversification.  相似文献   

16.
The exceptionally high plant diversity of the Greater Cape Floristic Region (GCFR) comprises a combination of ancient lineages and young radiations. A previous phylogenetic study of Aizoaceae subfamily Ruschioideae dated the radiation of this clade of > 1500 species in the GCFR to 3.8–8.7 Mya, establishing it as a flagship example of a diversification event triggered by the onset of a summer‐arid climate in the region. However, a more recent analysis found an older age for the Ruschioideae lineage (17 Mya), suggesting that the group may in fact have originated much before the aridification of the region 10–15 Mya. Here, we reassess the tempo of radiation of ice plants by using the most complete generic‐level phylogenetic tree for Aizoaceae to date, a revised calibration age and a new dating method. Our estimates of the age of the clade are even younger than initially thought (stem age 1.13–6.49 Mya), supporting the hypothesis that the radiation post‐dates the establishment of an arid environment in the GCFR and firmly placing the radiation among the fastest in angiosperms (diversification rate of 4.4 species per million years). We also statistically examine environmental and morphological correlates of richness in ice plants and find that diversity is strongly linked with precipitation, temperature, topographic complexity and the evolution of highly succulent leaves and wide‐band tracheids. © 2013 The Authors. Botanical Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 110–129.  相似文献   

17.
The viviparous sea snakes (Hydrophiinae) are a young radiation of at least 62 species that display spectacular morphological diversity and high levels of local sympatry. To shed light on the mechanisms underlying sea snake diversification, we investigated recent speciation and eco‐morphological differentiation in a clade of four nominal species with overlapping ranges in Southeast Asia and Australia. Analyses of morphology and stomach contents identified the presence of two distinct ecomorphs: a ‘macrocephalic’ ecomorph that reaches >2 m in length, has a large head and feeds on crevice‐dwelling eels and gobies; and a ‘microcephalic’ ecomorph that rarely exceeds 1 m in length, has a small head and narrow fore‐body and hunts snake eels in burrows. Mitochondrial sequences show a lack of reciprocal monophyly between ecomorphs and among putative species. However, individual assignment based on newly developed microsatellites separated co‐distributed specimens into four significantly differentiated clusters corresponding to morphological species designations, indicating limited recent gene flow and progress towards speciation. A coalescent species tree (based on mitochondrial and nuclear sequences) and isolation‐migration model (mitochondrial and microsatellite markers) suggest between one and three transitions between ecomorphs within the last approximately 1.2 million to approximately 840 000 years. In particular, the macrocephalic ‘eastern’ population of Hydrophis cyanocinctus and microcephalic H. melanocephalus appear to have diverged very recently and rapidly, resulting in major phenotypic differences and restriction of gene flow in sympatry. These results highlight the viviparous sea snakes as a promising system for speciation studies in the marine environment.  相似文献   

18.
Young species complexes that are widespread across ecologically disparate regions offer important insights into the process of speciation because of their relevance to how local adaptation and gene flow influence diversification. We used mitochondrial DNA and up to 28 152 genomewide single nucleotide polymorphisms from polytypic barking frogs (Craugastor augusti complex) to infer phylogenetic relationships and test for the signature of introgressive hybridization among diverging lineages. Our phylogenetic reconstructions suggest (i) a rapid Pliocene–Pleistocene radiation that produced at least nine distinct lineages and (ii) that geographic features of the arid Central Mexican Plateau contributed to two independent northward expansions. Despite clear lineage differentiation (many private alleles and high between‐lineage FST scores), D‐statistic tests, which differentiate introgression from ancestral polymorphism, allowed us to identify two putative instances of reticulate gene flow. Partitioned D‐statistics provided evidence that these events occurred in the same direction between clades but at different points in time. After correcting for geographic distance, we found that lineages involved in hybrid gene flow interactions had higher levels of genetic variation than independently evolving lineages. These findings suggest that the nature of hybrid compatibility can be conserved overlong periods of evolutionary time and that hybridization between diverging lineages may contribute to standing levels of genetic variation.  相似文献   

19.
We studied the speciose butterfly genus Erebia by reconstructing its phylogenetic relationships using parsimony and Bayesian approaches. We estimated times and rates of diversification for its lineages and employed a biogeographical analysis in order to reconstruct its evolutionary history. DNA sequence data from one mitochondrial gene and three nuclear genes were analyzed for a total of 74 species in Erebia. The estimated dates of origin and diversification for clades, in combination with a biogeographical analysis, suggest that the genus originated in Asian Russia and started its diversification process around 23 Myr. An important event was the dispersal of a lineage from Asia to Western Europe between 23 and 17 Myr, which allowed the radiation of most of species in the genus. The diversification pattern is consistent with a model of diversity limited by clade richness, which implies an early rapid diversification followed by deceleration due to a decrease in speciation. We argue that these characteristics of the evolutionary history of Erebia are consistent with a density‐dependent scenario, with species radiation limited by filling of niche space and reduced resources. We found that the Boeberia parmenio appears strongly supported in the genus Erebia and therefore we place Boeberia Prout, 1901 as a junior synonym of Erebia Dalman, 1816 ( syn. nov. ).  相似文献   

20.
Ecological speciation and adaptive radiation are key processes shaping northern temperate freshwater fish diversity. Both often involve parapatric differentiation between stream and lake populations and less often, sympatric intralacustrine diversification into habitat‐ and resource‐associated ecotypes. However, few taxa have been studied, calling for studies of others to investigate the generality of these processes. Here, we test for diversification within catchments in freshwater sculpins in a network of peri‐Alpine lakes and streams. Using 8047 and 13 182 restriction site‐associated (RADseq) SNPs, respectively, we identify three deeply divergent phylogeographic lineages associated with different major European drainages. Within the Aare catchment, we observe populations from geographically distant lakes to be genetically more similar to each other than to populations from nearby streams. This pattern is consistent with two distinct colonization waves, rather than by parapatric ecological speciation after a single colonization wave. We further find two distinct depth distribution modes in three lakes of the Aare catchment, one in very shallow and one in very deep water, and significant genomewide differentiation between these in one lake. Sculpins in the Aare catchment appear to represent an early‐stage adaptive radiation involving the evolution of a lacustrine lineage distinct from parapatric stream sculpins and the repeated onset of depth‐related intralacustrine differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号