共查询到20条相似文献,搜索用时 15 毫秒
1.
Population and phylogenomic decomposition via genotyping‐by‐sequencing in Australian Pelargonium 下载免费PDF全文
Adrienne B. Nicotra Caroline Chong Jason G. Bragg Chong Ren Ong Nicola C. Aitken Aaron Chuah Brendan Lepschi Justin O. Borevitz 《Molecular ecology》2016,25(9):2000-2014
Species delimitation has seen a paradigm shift as increasing accessibility of genomic‐scale data enables separation of lineages with convergent morphological traits and the merging of recently diverged ecotypes that have distinguishing characteristics. We inferred the process of lineage formation among Australian species in the widespread and highly variable genus Pelargonium by combining phylogenomic and population genomic analyses along with breeding system studies and character analysis. Phylogenomic analysis and population genetic clustering supported seven of the eight currently described species but provided little evidence for differences in genetic structure within the most widely distributed group that containing P. australe. In contrast, morphometric analysis detected three deep lineages within Australian Pelargonium; with P. australe consisting of five previously unrecognized entities occupying separate geographic ranges. The genomic approach enabled elucidation of parallel evolution in some traits formerly used to delineate species, as well as identification of ecotypic morphological differentiation within recognized species. Highly variable morphology and trait convergence each contribute to the discordance between phylogenomic relationships and morphological taxonomy. Data suggest that genetic divergence among species within the Australian Pelargonium may result from allopatric speciation while morphological differentiation within and among species may be more strongly driven by environmental differences. 相似文献
2.
Rapid postglacial diversification and long‐term stasis within the songbird genus Junco: phylogeographic and phylogenomic evidence 下载免费PDF全文
Guillermo Friis Pau Aleixandre Ricardo Rodríguez‐Estrella Adolfo G. Navarro‐Sigüenza Borja Milá 《Molecular ecology》2016,25(24):6175-6195
Natural systems composed of closely related taxa that vary in the degree of phenotypic divergence and geographic isolation provide an opportunity to investigate the rate of phenotypic diversification and the relative roles of selection and drift in driving lineage formation. The genus Junco (Aves: Emberizidae) of North America includes parapatric northern forms that are markedly divergent in plumage pattern and colour, in contrast to geographically isolated southern populations in remote areas that show moderate phenotypic divergence. Here, we quantify patterns of phenotypic divergence in morphology and plumage colour and use mitochondrial DNA genes, a nuclear intron, and genomewide SNPs to reconstruct the demographic and evolutionary history of the genus to infer relative rates of evolutionary divergence among lineages. We found that geographically isolated populations have evolved independently for hundreds of thousands of years despite little differentiation in phenotype, in sharp contrast to phenotypically diverse northern forms, which have diversified within the last few thousand years as a result of the rapid postglacial recolonization of North America. SNP data resolved young northern lineages into reciprocally monophyletic lineages, indicating low rates of gene flow even among closely related parapatric forms, and suggesting a role for strong genetic drift or multifarious selection acting on multiple loci in driving lineage divergence. Juncos represent a compelling example of speciation in action, where the combined effects of historical and selective factors have produced one of the fastest cases of speciation known in vertebrates. 相似文献
3.
Lucas A. Nell 《Molecular ecology resources》2020,20(4):1132-1140
High‐throughput sequencing (HTS) is central to the study of population genomics and has an increasingly important role in constructing phylogenies. Choices in research design for sequencing projects can include a wide range of factors, such as sequencing platform, depth of coverage and bioinformatic tools. Simulating HTS data better informs these decisions, as users can validate software by comparing output to the known simulation parameters. However, current standalone HTS simulators cannot generate variant haplotypes under even somewhat complex evolutionary scenarios, such as recombination or demographic change. This greatly reduces their usefulness for fields such as population genomics and phylogenomics. Here I present the R package jackalope that simply and efficiently simulates (i) sets of variant haplotypes from a reference genome and (ii) reads from both Illumina and Pacific Biosciences platforms. Haplotypes can be simulated using phylogenies, gene trees, coalescent‐simulation output, population‐genomic summary statistics, and Variant Call Format (VCF) files. jackalope can simulate single, paired‐end or mate‐pair Illumina reads, as well as reads from Pacific Biosciences. These simulations include sequencing errors, mapping qualities, multiplexing and optical/PCR duplicates. It can read reference genomes from fasta files and can simulate new ones, and all outputs can be written to standard file formats. jackalope is available for Mac, Windows and Linux systems. 相似文献
4.
Large‐scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate‐requiring mutants 下载免费PDF全文
Rachel M. Dent Marina N. Sharifi Alizée Malnoë Cat Haglund Robert H. Calderon Setsuko Wakao Krishna K. Niyogi 《The Plant journal : for cell and molecular biology》2015,82(2):337-351
Chlamydomonas reinhardtii is a unicellular green alga that is a key model organism in the study of photosynthesis and oxidative stress. Here we describe the large‐scale generation of a population of insertional mutants that have been screened for phenotypes related to photosynthesis and the isolation of 459 flanking sequence tags from 439 mutants. Recent phylogenomic analysis has identified a core set of genes, named GreenCut2, that are conserved in green algae and plants. Many of these genes are likely to be central to the process of photosynthesis, and they are over‐represented by sixfold among the screened insertional mutants, with insertion events isolated in or adjacent to 68 of 597 GreenCut2 genes. This enrichment thus provides experimental support for functional assignments based on previous bioinformatic analysis. To illustrate one of the uses of the population, a candidate gene approach based on genome position of the flanking sequence of the insertional mutant CAL027_01_20 was used to identify the molecular basis of the classical C. reinhardtii mutation ac17. These mutations were shown to affect the gene PDH2, which encodes a subunit of the plastid pyruvate dehydrogenase complex. The mutants and associated flanking sequence data described here are publicly available to the research community, and they represent one of the largest phenotyped collections of algal insertional mutants to date. 相似文献
5.
6.
Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans by co‐expressing glutaredoxin 下载免费PDF全文
Jun Cui Yushi Luan Ning Jiang Hang Bao Jun Meng 《The Plant journal : for cell and molecular biology》2017,89(3):577-589
7.
Wubishet A. Bekele Charlene P. Wight Shiaoman Chao Catherine J. Howarth Nicholas A. Tinker 《Plant biotechnology journal》2018,16(8):1452-1463
In a de novo genotyping‐by‐sequencing (GBS) analysis of short, 64‐base tag‐level haplotypes in 4657 accessions of cultivated oat, we discovered 164741 tag‐level (TL) genetic variants containing 241224 SNPs. From this, the marker density of an oat consensus map was increased by the addition of more than 70000 loci. The mapped TL genotypes of a 635‐line diversity panel were used to infer chromosome‐level (CL) haplotype maps. These maps revealed differences in the number and size of haplotype blocks, as well as differences in haplotype diversity between chromosomes and subsets of the diversity panel. We then explored potential benefits of SNP vs. TL vs. CL GBS variants for mapping, high‐resolution genome analysis and genomic selection in oats. A combined genome‐wide association study (GWAS) of heading date from multiple locations using both TL haplotypes and individual SNP markers identified 184 significant associations. A comparative GWAS using TL haplotypes, CL haplotype blocks and their combinations demonstrated the superiority of using TL haplotype markers. Using a principal component‐based genome‐wide scan, genomic regions containing signatures of selection were identified. These regions may contain genes that are responsible for the local adaptation of oats to Northern American conditions. Genomic selection for heading date using TL haplotypes or SNP markers gave comparable and promising prediction accuracies of up to r = 0.74. Genomic selection carried out in an independent calibration and test population for heading date gave promising prediction accuracies that ranged between r = 0.42 and 0.67. In conclusion, TL haplotype GBS‐derived markers facilitate genome analysis and genomic selection in oat. 相似文献
8.
Pei Xu Shizhong Xu Xiaohua Wu Ye Tao Baogen Wang Sha Wang Dehui Qin Zhongfu Lu Guojing Li 《The Plant journal : for cell and molecular biology》2014,77(3):430-442
Restriction site‐associated DNA sequencing (RAD‐Seq), a next‐generation sequencing‐based genome ‘complexity reduction’ protocol, has been useful in population genomics in species with a reference genome. However, the application of this protocol to natural populations of genomically underinvestigated species, particularly under low‐to‐medium sequencing depth, has not been well justified. In this study, a Bayesian method was developed for calling genotypes from an F2 population of bottle gourd [Lagenaria siceraria (Mol.) Standl.] to construct a high‐density genetic map. Low‐depth genome shotgun sequencing allowed the assembly of scaffolds/contigs comprising approximately 50% of the estimated genome, of which 922 were anchored for identifying syntenic regions between species. RAD‐Seq genotyping of a natural population comprising 80 accessions identified 3226 single nuclear polymorphisms (SNPs), based on which two sub‐gene pools were suggested for association with fruit shape. The two sub‐gene pools were moderately differentiated, as reflected by the Hudson's FST value of 0.14, and they represent regions on LG7 with strikingly elevated FST values. Seven‐fold reduction in heterozygosity and two times increase in LD (r2) were observed in the same region for the round‐fruited sub‐gene pool. Outlier test suggested the locus LX3405 on LG7 to be a candidate site under selection. Comparative genomic analysis revealed that the cucumber genome region syntenic to the high FST island on LG7 harbors an ortholog of the tomato fruit shape gene OVATE. Our results point to a bright future of applying RAD‐Seq to population genomic studies for non‐model species even under low‐to‐medium sequencing efforts. The genomic resources provide valuable information for cucurbit genome research. 相似文献
9.
Roberto Biello Archana Singh Cindayniah J. Godfrey Felicidad Fernndez Fernndez Sam T. Mugford Glen Powell Saskia A. Hogenhout Thomas C. Mathers 《Molecular ecology resources》2021,21(1):316-326
Woolly apple aphid (WAA, Eriosoma lanigerum Hausmann) (Hemiptera: Aphididae) is a major pest of apple trees (Malus domestica, order Rosales) and is critical to the economics of the apple industry in most parts of the world. Here, we generated a chromosome‐level genome assembly of WAA—representing the first genome sequence from the aphid subfamily Eriosomatinae—using a combination of 10X Genomics linked‐reads and in vivo Hi‐C data. The final genome assembly is 327 Mb, with 91% of the assembled sequences anchored into six chromosomes. The contig and scaffold N50 values are 158 kb and 71 Mb, respectively, and we predicted a total of 28,186 protein‐coding genes. The assembly is highly complete, including 97% of conserved arthropod single‐copy orthologues based on Benchmarking Universal Single‐Copy Orthologs (busco ) analysis. Phylogenomic analysis of WAA and nine previously published aphid genomes, spanning four aphid tribes and three subfamilies, reveals that the tribe Eriosomatini (represented by WAA) is recovered as a sister group to Aphidini + Macrosiphini (subfamily Aphidinae). We identified syntenic blocks of genes between our WAA assembly and the genomes of other aphid species and find that two WAA chromosomes (El5 and El6) map to the conserved Macrosiphini and Aphidini X chromosome. Our high‐quality WAA genome assembly and annotation provides a valuable resource for research in a broad range of areas such as comparative and population genomics, insect–plant interactions and pest resistance management. 相似文献
10.
Lisa N. Barrow Sabrina M. McNew Nora Mitchell Spencer C. Galen Holly L. Lutz Heather Skeen Thomas Valqui Jason D. Weckstein Christopher C. Witt 《Ecology letters》2019,22(6):987-998
Variation in susceptibility is ubiquitous in multi‐host, multi‐parasite assemblages, and can have profound implications for ecology and evolution in these systems. The extent to which susceptibility to parasites is phylogenetically conserved among hosts can be revealed by analysing diverse regional communities. We screened for haemosporidian parasites in 3983 birds representing 40 families and 523 species, spanning ~ 4500 m elevation in the tropical Andes. To quantify the influence of host phylogeny on infection status, we applied Bayesian phylogenetic multilevel models that included a suite of environmental, spatial, temporal, life history and ecological predictors. We found evidence of deeply conserved susceptibility across the avian tree; host phylogeny explained substantial variation in infection status, and results were robust to phylogenetic uncertainty. Our study suggests that susceptibility is governed, in part, by conserved, latent aspects of anti‐parasite defence. This demonstrates the importance of deep phylogeny for understanding present‐day ecological interactions. 相似文献
11.
12.
Weiwei Dong Huiwu Tian Dengqiang Wang Lixiong Yu Xinbin Duan Shaoping Liu Daqing Chen 《Zeitschrift fur angewandte Ichthyologie》2019,35(6):1295-1299
Gobiobotia filifer is a small benthic fish distributed in Yangtze River Basin. The abundance of G. filifer increased after impoundment of Xiluodu Dam and Xiangjiaba Dam. The state of population structure and changes of genetic diversity before and after impoundment of Xiluodu Dam and Xiangjiaba Dam were interesting issues. However, efficient molecular markers were rare, which will limit us to solve above problems. Twenty‐eight expressed sequence tag SSRs (EST‐SSRs) were successfully identified and verified as stable amplification and polymorphic loci by polyacrylamide gel electrophoresis (PAGE) and capillary electrophoresis. The number of alleles at these EST‐SSR loci ranged from 3 to 14, the polymorphism information content values were 0.125–0.897, and the observed and expected heterozygosities were 0.0–0.857 and 0.132–0.928, respectively. Cross‐species amplification of the 28 loci developed in this study was examined in seven individuals of each of the 7 taxa. The amplification efficiency of 28 EST‐SSRs primer pairs is related to the distance of genetic relationship between cross‐species with G. filifer, and same subfamily species (Xenophysogobio boulengeri and Xenophysogobio nudicorpa) showed the highest (50%) amplification efficiency. These EST‐SSR markers could be used to analyse genetic diversity and population structure of G. filifer and related species. 相似文献
13.
14.
15.
16.
Experimental evidence of genome‐wide impact of ecological selection during early stages of speciation‐with‐gene‐flow 下载免费PDF全文
Lauren Assour Thomas H.Q. Powell Glen R. Hood Scott Emrich Patrik Nosil Jeffrey L. Feder 《Ecology letters》2015,18(8):817-825
Theory predicts that speciation‐with‐gene‐flow is more likely when the consequences of selection for population divergence transitions from mainly direct effects of selection acting on individual genes to a collective property of all selected genes in the genome. Thus, understanding the direct impacts of ecologically based selection, as well as the indirect effects due to correlations among loci, is critical to understanding speciation. Here, we measure the genome‐wide impacts of host‐associated selection between hawthorn and apple host races of Rhagoletis pomonella (Diptera: Tephritidae), a model for contemporary speciation‐with‐gene‐flow. Allele frequency shifts of 32 455 SNPs induced in a selection experiment based on host phenology were genome wide and highly concordant with genetic divergence between co‐occurring apple and hawthorn flies in nature. This striking genome‐wide similarity between experimental and natural populations of R. pomonella underscores the importance of ecological selection at early stages of divergence and calls for further integration of studies of eco‐evolutionary dynamics and genome divergence. 相似文献
17.
Pierre‐François Perroud Fabian B. Haas Manuel Hiss Kristian K. Ullrich Alessandro Alboresi Mojgan Amirebrahimi Kerrie Barry Roberto Bassi Sandrine Bonhomme Haodong Chen Juliet C. Coates Tomomichi Fujita Anouchka Guyon‐Debast Daniel Lang Junyan Lin Anna Lipzen Fabien Nogué Melvin J. Oliver Inés Ponce de León Ralph S. Quatrano Catherine Rameau Bernd Reiss Ralf Reski Mariana Ricca Younousse Saidi Ning Sun Péter Szövényi Avinash Sreedasyam Jane Grimwood Gary Stacey Jeremy Schmutz Stefan A. Rensing 《The Plant journal : for cell and molecular biology》2018,95(1):168-182
18.
Independent evolution of sexual dimorphism and female‐limited mimicry in swallowtail butterflies (Papilio dardanus and Papilio phorcas) 下载免费PDF全文
M. J. T. N. Timmermans M. J. Thompson S. Collins A. P. Vogler 《Molecular ecology》2017,26(5):1273-1284
Several species of swallowtail butterflies (genus Papilio) are Batesian mimics that express multiple mimetic female forms, while the males are monomorphic and nonmimetic. The evolution of such sex‐limited mimicry may involve sexual dimorphism arising first and mimicry subsequently. Such a stepwise scenario through a nonmimetic, sexually dimorphic stage has been proposed for two closely related sexually dimorphic species: Papilio phorcas, a nonmimetic species with two female forms, and Papilio dardanus, a female‐limited polymorphic mimetic species. Their close relationship indicates that female‐limited polymorphism could be a shared derived character of the two species. Here, we present a phylogenomic analysis of the dardanus group using 3964 nuclear loci and whole mitochondrial genomes, showing that they are not sister species and thus that the sexually dimorphic state has arisen independently in the two species. Nonhomology of the female polymorphism in both species is supported by population genetic analysis of engrailed, the presumed mimicry switch locus in P. dardanus. McDonald–Kreitman tests performed on SNPs in engrailed showed the signature of balancing selection in a polymorphic population of P. dardanus, but not in monomorphic populations, nor in the nonmimetic P. phorcas. Hence, the wing polymorphism does not balance polymorphisms in engrailed in P. phorcas. Equally, unlike in P. dardanus, none of the SNPs in P. phorcas engrailed were associated with either female morph. We conclude that sexual dimorphism due to female polymorphism evolved independently in both species from monomorphic, nonmimetic states. While sexual selection may drive male–female dimorphism in nonmimetic species, in mimetic Papilios, natural selection for protection from predators in females is an alternative route to sexual dimorphism. 相似文献
19.
Species identification and comparative population genetics of four coastal houndsharks based on novel NGS‐mined microsatellites 下载免费PDF全文
Simo N. Maduna Charné Rossouw Charlene da Silva Michelle Soekoe Aletta E. Bester‐van der Merwe 《Ecology and evolution》2017,7(5):1462-1486
The common smooth‐hound (Mustelus mustelus ) is the topmost bio‐economically and recreationally important shark species in southern Africa, western Africa, and Mediterranean Sea. Here, we used the Illumina HiSeq? 2000 next‐generation sequencing (NGS ) technology to develop novel microsatellite markers for Mustelus mustelus . Two microsatellite multiplex panels were constructed from 11 polymorphic loci and characterized in two populations of Mustelus mustelus representative of its South African distribution. The markers were then tested for cross‐species utility in Galeorhinus galeus , Mustelus palumbes , and Triakis megalopterus , three other demersal coastal sharks also subjected to recreational and/or commercial fishery pressures in South Africa. We assessed genetic diversity (N A, A R, H O, H E, and PIC) and differentiation (F ST and D est) for each species and also examined the potential use of these markers in species assignment. In each of the four species, all 11 microsatellites were variable with up to a mean N A of 8, A R up to 7.5, H E and PIC as high as 0.842. We were able to reject genetic homogeneity for all species investigated here except for T . megalopterus . We found that the panel of the microsatellite markers developed in this study could discriminate between the study species, particularly for those that are morphologically very similar. Our study provides molecular tools to address ecological and evolutionary questions vital to the conservation and management of these locally and globally exploited shark species. 相似文献
20.
Babu Valliyodan Steven B. Cannon Philipp E. Bayer Shengqiang Shu Anne V. Brown Longhui Ren Jerry Jenkins Claire Y.‐L. Chung Ting‐Fung Chan Christopher G. Daum Christopher Plott Alex Hastie Kobi Baruch Kerrie W. Barry Wei Huang Gunvant Patil Rajeev K. Varshney Haifei Hu Jacqueline Batley Yuxuan Yuan Qijian Song Robert M. Stupar David M. Goodstein Gary Stacey Hon‐Ming Lam Scott A. Jackson Jeremy Schmutz Jane Grimwood David Edwards Henry T. Nguyen 《The Plant journal : for cell and molecular biology》2019,100(5):1066-1082
We report reference‐quality genome assemblies and annotations for two accessions of soybean (Glycine max) and for one accession of Glycine soja, the closest wild relative of G. max. The G. max assemblies provided are for widely used US cultivars: the northern line Williams 82 (Wm82) and the southern line Lee. The Wm82 assembly improves the prior published assembly, and the Lee and G. soja assemblies are new for these accessions. Comparisons among the three accessions show generally high structural conservation, but nucleotide difference of 1.7 single‐nucleotide polymorphisms (snps) per kb between Wm82 and Lee, and 4.7 snps per kb between these lines and G. soja. snp distributions and comparisons with genotypes of the Lee and Wm82 parents highlight patterns of introgression and haplotype structure. Comparisons against the US germplasm collection show placement of the sequenced accessions relative to global soybean diversity. Analysis of a pan‐gene collection shows generally high conservation, with variation occurring primarily in genomically clustered gene families. We found approximately 40–42 inversions per chromosome between either Lee or Wm82v4 and G. soja, and approximately 32 inversions per chromosome between Wm82 and Lee. We also investigated five domestication loci. For each locus, we found two different alleles with functional differences between G. soja and the two domesticated accessions. The genome assemblies for multiple cultivated accessions and for the closest wild ancestor of soybean provides a valuable set of resources for identifying causal variants that underlie traits for the domestication and improvement of soybean, serving as a basis for future research and crop improvement efforts for this important crop species. 相似文献