首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Relatively little is known about whether and how nongenetic inheritance interacts with selection to impact the evolution of phenotypic plasticity. Here, we empirically evaluated how stabilizing selection and a common form of nongenetic inheritance—maternal environmental effects—jointly influence the evolution of phenotypic plasticity in natural populations of spadefoot toads. We compared populations that previous fieldwork has shown to have evolved conspicuous plasticity in resource‐use phenotypes (“resource polyphenism”) with those that, owing to stabilizing selection favouring a narrower range of such phenotypes, appear to have lost this plasticity. We show that: (a) this apparent loss of plasticity in nature reflects a condition‐dependent maternal effect and not a genetic loss of plasticity, that is “genetic assimilation,” and (b) this plasticity is not costly. By shielding noncostly plasticity from selection, nongenetic inheritance generally, and maternal effects specifically, can preclude genetic assimilation from occurring and consequently impede adaptive (genetic) evolution.  相似文献   

2.
Seasonal germination timing strongly influences lifetime fitness and can affect the ability of plant populations to colonize and persist in new environments. To quantify the influence of seasonal environmental factors on germination and to test whether pleiotropy or close linkage are significant constraints on the evolution of germination in different seasonal conditions, we dispersed novel recombinant genotypes of Arabidopsis thaliana into two geographic locations. To decouple the photoperiod during seed maturation from the postdispersal season that maternal photoperiod predicts, replicates of recombinant inbred lines were grown under short days and long days under controlled conditions, and their seeds were dispersed during June in Kentucky (KY) and during June and November in Rhode Island (RI). We found that postdispersal seasonal conditions influenced germination more strongly than did the photoperiod during seed maturation. Genetic variation was detected for germination responses to all environmental factors. Transgressive segregation created novel germination phenotypes, revealing a potential contribution of hybridization of ecotypes to the evolution of germination. A genetic trade-off in germination percentage across sites indicated that determinants of fitness at or before the germination stage may constrain the geographic range that a given genotype can inhabit. However, germination timing exhibited only weak pleiotropy across treatments, suggesting that different sets of genes contribute to variation in germination behavior in different seasonal conditions and geographic locations. Thus, the genetic potential exists for rapid evolution of appropriate germination responses in novel environments, facilitating colonization across a broad geographic range.  相似文献   

3.
Stress occurring in periods shorter than life span strongly selects for reversible phenotypic plasticity, for maximum reliability of stress indicating cues and for minimal response delays. The selective advantage of genotypes that are able to produce adaptive reversible plastic phenotypes is calculated by using the concept of environmental tolerance. Analytic expressions are given for optimal values of mode and breadth of tolerance functions for stress induced and non-induced phenotypes depending on (1) length of stress periods, (2) response delay for switching into the induced phenotype, (3) response delay for rebuilding the non-induced phenotype, (4) intensity of stress, i.e. mean value of the stress inducing environment, (5) coefficient of variation of the stress environment and (6) completeness of information available to the stressed organism. Adaptively reversible phenotypic plastic traits will most probably affect fitness in a way that can be described by simultaneous reversible plasticity in mode and breadth of tolerance functions.  相似文献   

4.
Phenotypic plasticity is the primary mechanism of organismal resilience to abiotic and biotic stress, and genetic differentiation in plasticity can evolve if stresses differ among populations. Inducible defence is a common form of adaptive phenotypic plasticity, and long‐standing theory predicts that its evolution is shaped by costs of the defensive traits, costs of plasticity and a trade‐off in allocation to constitutive versus induced traits. We used a common garden to study the evolution of defence in two native populations of wild arugula Eruca sativa (Brassicaceae) from contrasting desert and Mediterranean habitats that differ in attack by caterpillars and aphids. We report genetic differentiation and additive genetic variance for phenology, growth and three defensive traits (toxic glucosinolates, anti‐nutritive protease inhibitors and physical trichome barriers) as well their inducibility in response to the plant hormone jasmonic acid. The two populations were strongly differentiated for plasticity in nearly all traits. There was little evidence for costs of defence or plasticity, but constitutive and induced traits showed a consistent additive genetic trade‐off within each population for the three defensive traits. We conclude that these populations have evolutionarily diverged in inducible defence and retain ample potential for the future evolution of phenotypic plasticity in defence.  相似文献   

5.
蚜虫的表型可塑性及其遗传基础   总被引:5,自引:0,他引:5  
陈倩  沈佐锐  王永模 《昆虫学报》2006,49(5):859-866
表型可塑性(phenotypic plasticity)是有机体在适应生物或非生物环境时呈现不同表型的能力,并且有遗传基础。蚜虫是农林业的重要经济害虫,易受外部环境因素和自身遗传因素的影响而表现出表型的可塑性。本文综述了外部环境因素(如寄主植物、温度、光照、天敌等)的变异对蚜虫表型的影响。总体来说,蚜虫表型会因寄主植物的种类、品系以及发育阶段和营养状况的不同而有所差异; 温度变化对不同蚜虫种类的生殖力、生存力以及有翅蚜产生与否有极大影响。研究人员利用RAPD-PCR、微卫星等分子遗传标记确认寄主植物和温度是造成蚜虫种群遗传分化的重要因素。就内部因素而言,不同的蚜虫种类以及同一种蚜虫的不同克隆系在表型和遗传进化上也有不同程度的差异,在蚜虫受外界条件影响的不同虫态以及不同体色克隆系、不同生活周期的类群之间, 其生物学、生态学和遗传学都有所差异。分析上述各个因素对蚜虫表型可塑性的影响,对于蚜虫的生态进化研究和有效治理蚜害均有重要意义。本文在最后讨论了还有必要深入研究的诸多问题,如表观遗传调控,包括DNA甲基化、基因所在的核小体上的组蛋白的共价修饰和染色质重塑、siRNA介导的基因沉默以及微RNA(microRNA 或 miRNA)调控的基因表达变化等,又如有翅蚜的表型和遗传学研究,以及全球气候变化对蚜虫的生态进化的影响等问题。  相似文献   

6.
Female mate choice is a complex decision‐making process that involves many context‐dependent factors. In Drosophila melanogaster, a model species for the study of sexual selection, indirect genetic effects (IGEs) of general social interactions can influence female mate choice behaviors, but the potential impacts of IGEs associated with mating experiences are poorly understood. Here, we examined whether the IGEs associated with a previous mating experience had an effect on subsequent female mate choice behaviors and quantified the degree of additive genetic variation associated with this effect. Females from 21 different genetic backgrounds were housed with males from one of two distinct genetic backgrounds for either a short (3 hr) or long (48 hr) exposure period and their subsequent mate choice behaviors were scored. We found that the genetic identity of a previous mate significantly influenced a female's subsequent interest in males and preference of males. Additionally, a hemiclonal analysis revealed significant additive genetic variation associated with experience‐dependent mate choice behaviors, indicating a genotype‐by‐environment interaction for both of these parameters. We discuss the significance of these results with regard to the evolution of plasticity in female mate choice behaviors and the maintenance of variation in harmful male traits.  相似文献   

7.
Germination timing of Arabidopsis thaliana displays strong plasticity to geographic location and seasonal conditions experienced by seeds. We identified which plastic responses were adaptive using recombinant inbred lines in a field manipulation of geographic location (Kentucky, KY; Rhode Island, RI), maternal photoperiod (14-h and 10-h days), and season of dispersal (June and November). Transgressive segregation created novel genotypes that had either higher fitness or lower fitness in certain environments than either parent. Natural selection on germination timing and its variation explained 72% of the variance in fitness among genotypes in KY, 30% in June-dispersed seeds in RI, but only 4% in November-dispersed seeds in RI. Therefore, natural selection on germination timing is an extremely efficient sieve that can determine which genotypes can persist in some locations, and its efficiency is geographically variable and depends on other aspects of life history. We found no evidence for adaptive responses to maternal photoperiod during seed maturation. We did find adaptive plasticity to season of seed dispersal in RI. Seeds dispersed in June postponed germination, which was adaptive, while seeds dispersed in November accelerated germination, which was also adaptive. We also found maladaptive plasticity to geographic location for seeds dispersed in June, such that seeds dispersed in KY germinated much sooner than the optimum time. Consequently, bet hedging in germination timing was favorable in KY; genotypes with more variation in germination timing had higher fitness because greater variation was associated with postponed germination. Selection on germination timing varied across geographic location, indicating that germination timing can be a critical stage in the establishment of genotypes in new locations. The rate of evolution of germination timing may therefore strongly influence the rate at which species can expand their range.  相似文献   

8.
Germination responses to seasonal conditions determine the environment experienced by postgermination life stages, and this ability has potential consequences for the evolution of plant life histories. Using recombinant inbred lines of Arabidopsis thaliana, we tested whether life-history characters exhibited plasticity to germination timing, whether germination timing influenced the strength and mode of natural selection on life-history traits, and whether germination timing influenced the expression of genetic variation for life-history traits. Adult life-history traits exhibited strong plasticity to season of germination, and season of germination significantly altered the strength, mode, and even direction of selection on life-history traits under some conditions. None of the average plastic responses to season of germination or season of dispersal were adaptive, although some genotypes within our sample did exhibit adaptive responses. Thus, recombination between inbred lineages created some novel adaptive genotypes with improved responses to the seasonal timing of germination under some, but not all, conditions. Genetically based variation in germination time tended to augment genetic variances of adult life-history traits, but it did not increase the heritabilities because it also increased environmentally induced variance. Under some conditions, plasticity of life-history traits in response to genetically variable germination timing actually obscured genetic variation for those traits. Therefore, the evolution of germination responses can influence the evolution of life histories in a general manner by altering natural selection on life-history traits and the genetic variation of these traits.  相似文献   

9.
Abstract.— Adaptive phenotypic plasticity in chemical defense is thought to play a major role in plant-herbivore interactions. We investigated genetic variation for inducibility of defensive traits in wild radish plants and asked if the evolution of induction is constrained by costs of phenotypic plasticity. In a greenhouse experiment using paternal half-sibling families, we show additive genetic variation for plasticity in glucosinolate concentration. Genetic variation for glucosinolates was not detected in undamaged plants, but was significant following herbivory by a specialist herbivore, Pieris rapae . On average, damaged plants had 55% higher concentrations of glucosinolates compared to controls. In addition, we found significant narrow-sense heritabilities for leaf size, trichome number, flowering phenology, and lifetime fruit production. In a second experiment, we found evidence of genetic variation in induced plant resistance to P. rapae . Although overall there was little evidence for genetic correlations between the defensive and life-history traits we measured, we show that more plastic families had lower fitness than less plastic families in the absence of herbivory (i.e., evidence for genetic costs of plasticity). Thus, there is genetic variation for induction of defense in wild radish, and the evolution of inducibility may be constrained by costs of plasticity.  相似文献   

10.
An ongoing new synthesis in evolutionary theory is expanding our view of the sources of heritable variation beyond point mutations of fixed phenotypic effects to include environmentally sensitive changes in gene regulation. This expansion of the paradigm is necessary given ample evidence for a heritable ability to alter gene expression in response to environmental cues. In consequence, single genotypes are often capable of adaptively expressing different phenotypes in different environments, i.e. are adaptively plastic. We present an individual-based heuristic model to compare the adaptive dynamics of populations composed of plastic or non-plastic genotypes under a wide range of scenarios where we modify environmental variation, mutation rate and costs of plasticity. The model shows that adaptive plasticity contributes to the maintenance of genetic variation within populations, reduces bottlenecks when facing rapid environmental changes and confers an overall faster rate of adaptation. In fluctuating environments, plasticity is favoured by selection and maintained in the population. However, if the environment stabilizes and costs of plasticity are high, plasticity is reduced by selection, leading to genetic assimilation, which could result in species diversification. More broadly, our model shows that adaptive plasticity is a common consequence of selection under environmental heterogeneity, and hence a potentially common phenomenon in nature. Thus, taking adaptive plasticity into account substantially extends our view of adaptive evolution.  相似文献   

11.
Phenotypic plasticity allows organisms to cope with rapid environmental change. Yet exactly when during ontogeny plastic responses are elicited, whether plastic responses produced in one generation influence phenotypic variation and fitness in subsequent generations, and the role of plasticity in shaping population divergences, remains overall poorly understood. Here, we use the dung beetle Onthophagus taurus to assess plastic responses to temperature at several life stages bridging three generations and compare these responses across three recently diverged populations. We find that beetles reared at hotter temperatures grow less than those reared at mild temperatures, and that this attenuated growth has transgenerational consequences by reducing offspring size and survival in subsequent generations. However, we also find evidence that plasticity may mitigate these consequences in two ways: 1) mothers modify the temperature of their offspring's developmental environment via behavioral plasticity and 2) in one population, offspring exhibit accelerated growth when exposed to hot temperatures during very early development (‘developmental programming’). Lastly, our study reveals that offspring responses to temperature diverged among populations in fewer than 100 generations, possibly in response to range‐specific changes in climatic or social conditions.  相似文献   

12.
Nongenetic inheritance mechanisms such as transgenerational plasticity (TGP) can buffer populations against rapid environmental change such as ocean warming. Yet, little is known about how long these effects persist and whether they are cumulative over generations. Here, we tested for adaptive TGP in response to simulated ocean warming across parental and grandparental generations of marine sticklebacks. Grandparents were acclimated for two months during reproductive conditioning, whereas parents experienced developmental acclimation, allowing us to compare the fitness consequences of short‐term vs. prolonged exposure to elevated temperature across multiple generations. We found that reproductive output of F1 adults was primarily determined by maternal developmental temperature, but carry‐over effects from grandparental acclimation environments resulted in cumulative negative effects of elevated temperature on hatching success. In very early stages of growth, F2 offspring reached larger sizes in their respective paternal and grandparental environment down the paternal line, suggesting that other factors than just the paternal genome may be transferred between generations. In later growth stages, maternal and maternal granddam environments strongly influenced offspring body size, but in opposing directions, indicating that the mechanism(s) underlying the transfer of environmental information may have differed between acute and developmental acclimation experienced by the two generations. Taken together, our results suggest that the fitness consequences of parental and grandparental TGP are highly context dependent, but will play an important role in mediating some of the impacts of rapid climate change in this system.  相似文献   

13.
Listen to the news and you are bound to hear that researchers are increasingly interested in the biological manifestations of trauma that reverberate through the generations. Research in this area can be controversial in the public realm, provoking societal issues about personal responsibility (are we really born free or are we born with the burden of our ancestors’ experience?). It is also a touchy subject within evolutionary biology because it provokes concerns about Lamarckianism and general scepticism about the importance of extra‐genetic inheritance (Laland et al., 2014 ). Part of why the research in this area has been controversial is because it is difficult to study. For one, there is the problem of how long it takes to track changes across generations, making long‐term, multi‐generational studies especially tricky in long‐lived species. Moreover, there are presently very few (if any) known molecular mechanisms by which environmental effects can be incorporated into the genome and persist for multiple successive generations, casting doubt on their evolutionary repercussions. Fortunately, you only have to look in your local pond to find the creatures that are teaching us a great deal about how and why the experiences of parents are passed down to their offspring. In this issue of Molecular Ecology, Hales et al. (Hales et al., 2017 ) illustrate the power of Daphnia (“water fleas”) for making headway in this field.  相似文献   

14.
BackgroundPlastic responses of plants to the environment are ubiquitous. Phenotypic plasticity occurs in many forms and at many biological scales, and its adaptive value depends on the specific environment and interactions with other plant traits and organisms. Even though plasticity is the norm rather than the exception, its complex nature has been a challenge in characterizing the expression of plasticity, its adaptive value for fitness and the environmental cues that regulate its expression.ScopeThis review discusses the characterization and costs of plasticity and approaches, considerations, and promising research directions in studying plasticity. Phenotypic plasticity is genetically controlled and heritable; however, little is known about how organisms perceive, interpret and respond to environmental cues, and the genes and pathways associated with plasticity. Not every genotype is plastic for every trait, and plasticity is not infinite, suggesting trade-offs, costs and limits to expression of plasticity. The timing, specificity and duration of plasticity are critical to their adaptive value for plant fitness.ConclusionsThere are many research opportunities to advance our understanding of plant phenotypic plasticity. New methodology and technological breakthroughs enable the study of phenotypic responses across biological scales and in multiple environments. Understanding the mechanisms of plasticity and how the expression of specific phenotypes influences fitness in many environmental ranges would benefit many areas of plant science ranging from basic research to applied breeding for crop improvement.  相似文献   

15.
Detecting adaptation involves comparing the performance of populations evolving in different environments. This detection may be confounded by effects due to the environment experienced by organisms prior to the test. We tested whether such confounding effects occur, using spider-mite selection lines on two novel hosts and one ancestral host, after 15 generations of selection. Mites were either sampled directly from the selection lines or subjected to a common juvenile or to a common maternal environment, mimicking the most frequent environmental manipulations. These environments strongly affected all life-history traits. Moreover, the detection of adaptation and correlated responses on the ancestral host was inconsistent among environments in almost 20% of the cases. Indeed, we did not detect responses unambiguously for any life-history trait. This inconsistency was due to differential environmental effects on lines from different selection regimes. Therefore, the detection of adaptation requires a careful control of these environmental effects.  相似文献   

16.
Natural enemy attack can cause transgenerational shifts in phenotype such that offspring are less vulnerable to future attack. Desert locusts (Schistocerca gregaria) show density‐dependent variation in their resistance to pathogens, such that they are less vulnerable to pathogens when in the high‐density gregarious phase state (when they would probably be more exposed to pathogens) than when in the solitarious phase state. We therefore hypothesized that infected gregarious parents would maintain this phenotype in their offspring. We infected gregarious desert locust nymphs with the fungal pathogen Metarhizium anisopliae var. acridum, and allowed them to survive to reproduction by means of behavioural fever. The phase state of the locust offspring was assessed by their colouration and behavioural assays. Contrary to our hypothesis, we found an increase in solitarization in the infected population (14.6% solitarious offspring from infected parents, vs. <2% from uninfected counterparts at equivalent density). In a second experiment, we simulated behavioural fever temperatures and obtained a similar result (13.6% solitarious offspring vs. 4.4% from controls), implying that the phenomenon is probably a side‐effect of the hosts’ fever response. Identification of this novel environmental factor affecting locust phase state could have important implications for the biological control of these major pests.  相似文献   

17.
Organisms are capable of an astonishing repertoire of phenotypic responses to the environment, and these often define important adaptive solutions to heterogeneous and unpredictable conditions. The terms ‘phenotypic plasticity’ and ‘canalization’ indicate whether environmental variation has a large or small effect on the phenotype. The evolution of canalization and plasticity is influenced by optimizing selection‐targeting traits within environments, but inherent fitness costs of plasticity may also be important. We present a meta‐analysis of 27 studies (of 16 species of plant and 7 animals) that have measured selection on the degree of plasticity independent of the characters expressed within environments. Costs of plasticity and canalization were equally frequent and usually mild; large costs were observed only in studies with low sample size. We tested the importance of several covariates, but only the degree of environmental stress was marginally positively related to the cost of plasticity. These findings suggest that costs of plasticity are often weak, and may influence phenotypic evolution only under stressful conditions.  相似文献   

18.
This study was designed to examine life history flexibility arising from phenotypic plasticity in response to temperature and from maternal effects in response to reproductive diapause in a temperate zone population of the milkweek bug (Oncopeltus fasciatus). We employed a split-family, first-cousin, full-sib design with siblings reared at different temperatures in order to quantify phenotypic plasticity, maternal effects, and variation for each. The following traits were analyzed: development time, age at first reproduction, longevity, early-life fecundity, and wing length. We found both life history plasticity and maternal effects on life history traits which tend to enhance the colonizing ability of offspring born to mothers that have undergone reproductive diapause. We were unable to demonstrate additive genetic variation for plasticity for any of the traits, while for development time and wing length we found variation due to non-additive genetic or common-environmental sources. We were also unable to demonstrate additive genetic variation for maternal effects, although variation may exist at low levels that are difficult to detect using cousin-families. The apparent lack of variation in this population would constrain evolution of life history flexibility even though considerable flexibility exists in the phenotype.  相似文献   

19.
The ability of an organism to alter the environment that it experiences has been termed 'niche construction'. Plants have several ways whereby they can determine the environment to which they are exposed at different life stages. This paper discusses three of these: plasticity in dispersal, flowering timing and germination timing. It reviews pathways through which niche construction alters evolutionary and ecological trajectories by altering the selective environment to which organisms are exposed, the phenotypic expression of plastic characters, and the expression of genetic variation. It provides examples whereby niche construction creates positive or negative feedbacks between phenotypes and environments, which in turn cause novel evolutionary constraints and novel life-history expression.  相似文献   

20.
Existing insight suggests that maternal effects have a substantial impact on evolution, yet these predictions assume that maternal effects themselves are evolutionarily constant. Hence, it is poorly understood how natural selection shapes maternal effects in different ecological circumstances. To overcome this, the current study derives an evolutionary model of maternal effects in a quantitative genetics context. In constant environments, we show that maternal effects evolve to slight negative values that result in a reduction of the phenotypic variance (canalization). By contrast, in populations experiencing abrupt change, maternal effects transiently evolve to positive values for many generations, facilitating the transmission of beneficial maternal phenotypes to offspring. In periodically fluctuating environments, maternal effects evolve according to the autocorrelation between maternal and offspring environments, favoring positive maternal effects when change is slow, and negative maternal effects when change is rapid. Generally, the strongest maternal effects occur for traits that experience very strong selection and for which plasticity is severely constrained. By contrast, for traits experiencing weak selection, phenotypic plasticity enhances the evolutionary scope of maternal effects, although maternal effects attain much smaller values throughout. As weak selection is common, finding substantial maternal influences on offspring phenotypes may be more challenging than anticipated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号