首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
The first North American RAD Sequencing and Genomics Symposium, sponsored by Floragenex (http://www.floragenex.com/radmeeting/), took place in Portland, Oregon (USA) on 19 April 2011. This symposium was convened to promote and discuss the use of restriction-site-associated DNA (RAD) sequencing technologies. RAD sequencing is one of several strategies recently developed to increase the power of data generated via short-read sequencing technologies by reducing their complexity (Baird et al. 2008; Huang et al. 2009; Andolfatto et al. 2011; Elshire et al. 2011). RAD sequencing, as a form of genotyping by sequencing, has been effectively applied in genetic mapping and quantitative trait loci (QTL) analyses in a range of organisms including nonmodel, genetically highly heterogeneous organisms (Table 1; Baird et al. 2008; Baxter et al. 2011; Chutimanitsakun et al. 2011; Pfender et al. 2011). RAD sequencing has recently found applications in phylogeography (Emerson et al. 2010) and population genomics (Hohenlohe et al. 2010). Considering the diversity of talks presented during this meeting, more developments are to be expected in the very near future.  相似文献   

2.
Genetic polymorphisms, particularly single nucleotide polymorphisms (SNPs), have been widely used to advance quantitative, functional and evolutionary genomics. Ideally, all genetic variants among individuals should be discovered when next generation sequencing (NGS) technologies and platforms are used for whole genome sequencing or resequencing. In order to improve the cost-effectiveness of the process, however, the research community has mainly focused on developing genome-wide sampling sequencing (GWSS) methods, a collection of reduced genome complexity sequencing, reduced genome representation sequencing and selective genome target sequencing. Here we review the major steps involved in library preparation, the types of adapters used for ligation and the primers designed for amplification of ligated products for sequencing. Unfortunately, currently available GWSS methods have their drawbacks, such as inconsistency in the number of reads per sample library, the number of sites/targets per individual, and the number of reads per site/target, all of which result in missing data. Suggestions are proposed here to improve library construction, genotype calling accuracy, genome-wide marker density and read mapping rate. In brief, optimized GWSS library preparation should generate a unique set of target sites with dense distribution along chromosomes and even coverage per site across all individuals.  相似文献   

3.
In the last decade, the revolution in sequencing technologies has deeply impacted crop genotyping practice. New methods allowing rapid, high‐throughput genotyping of entire crop populations have proliferated and opened the door to wider use of molecular tools in plant breeding. These new genotyping‐by‐sequencing (GBS) methods include over a dozen reduced‐representation sequencing (RRS) approaches and at least four whole‐genome resequencing (WGR) approaches. The diversity of methods available, each often producing different types of data at different cost, can make selection of the best‐suited method seem a daunting task. We review the most common genotyping methods used today and compare their suitability for linkage mapping, genomewide association studies (GWAS), marker‐assisted and genomic selection and genome assembly and improvement in crops with various genome sizes and complexity. Furthermore, we give an outline of bioinformatics tools for analysis of genotyping data. WGR is well suited to genotyping biparental cross populations with complex, small‐ to moderate‐sized genomes and provides the lowest cost per marker data point. RRS approaches differ in their suitability for various tasks, but demonstrate similar costs per marker data point. These approaches are generally better suited for de novo applications and more cost‐effective when genotyping populations with large genomes or high heterozygosity. We expect that although RRS approaches will remain the most cost‐effective for some time, WGR will become more widespread for crop genotyping as sequencing costs continue to decrease.  相似文献   

4.
There has been remarkably little attention to using the high resolution provided by genotyping‐by‐sequencing (i.e., RADseq and similar methods) for assessing relatedness in wildlife populations. A major hurdle is the genotyping error, especially allelic dropout, often found in this type of data that could lead to downward‐biased, yet precise, estimates of relatedness. Here, we assess the applicability of genotyping‐by‐sequencing for relatedness inferences given its relatively high genotyping error rate. Individuals of known relatedness were simulated under genotyping error, allelic dropout and missing data scenarios based on an empirical ddRAD data set, and their true relatedness was compared to that estimated by seven relatedness estimators. We found that an estimator chosen through such analyses can circumvent the influence of genotyping error, with the estimator of Ritland (Genetics Research, 67, 175) shown to be unaffected by allelic dropout and to be the most accurate when there is genotyping error. We also found that the choice of estimator should not rely solely on the strength of correlation between estimated and true relatedness as a strong correlation does not necessarily mean estimates are close to true relatedness. We also demonstrated how even a large SNP data set with genotyping error (allelic dropout or otherwise) or missing data still performs better than a perfectly genotyped microsatellite data set of tens of markers. The simulation‐based approach used here can be easily implemented by others on their own genotyping‐by‐sequencing data sets to confirm the most appropriate and powerful estimator for their data.  相似文献   

5.
Massively parallel sequencing a small proportion of the whole genome at high coverage enables answering a wide range of questions from molecular evolution and evolutionary biology to animal and plant breeding and forensics. In this study, we describe the development of restriction‐site associated DNA (RAD) sequencing approach for Ion Torrent PGM platform. Our protocol results in extreme genome complexity reduction using two rare‐cutting restriction enzymes and strict size selection of the library allowing sequencing of a relatively small number of genomic fragments with high sequencing depth. We applied this approach to a common freshwater fish species, the Eurasian perch (Perca fluviatilis L.), and generated over 2.2 MB of novel sequence data consisting of ~17 000 contigs, identified 1259 single nucleotide polymorphisms (SNPs). We also estimated genetic differentiation between the DNA pools from freshwater (Lake Peipus) and brackish water (the Baltic Sea) populations and identified SNPs with the strongest signal of differentiation that could be used for robust individual assignment in the future. This work represents an important step towards developing genomic resources and genetic tools for the Eurasian perch. We expect that our ddRAD sequencing protocol for semiconductor sequencing technology will be useful alternative for currently available RAD protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号