首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microgeographic adaptation occurs when populations evolve divergent fitness advantages across the spatial scales at which focal organisms regularly disperse. Although an increasing number of studies find evidence for microgeographic adaptation, the underlying causes often remain unknown. Adaptive divergence requires some combination of limited gene flow and strong divergent natural selection among populations. In this study, we estimated the relative influence of selection, gene flow, and the spatial arrangement of populations in shaping patterns of adaptive divergence in natural populations of the spotted salamander (Ambystoma maculatum). Within the study region, A. maculatum co‐occur with the predatory marbled salamander (Ambystoma opacum) in some ponds, and past studies have established a link between predation risk and adaptive trait variation in A. maculatum. Using 14 microsatellite loci, we found a significant pattern of genetic divergence among A. maculatum populations corresponding to levels of A. opacum predation risk. Additionally, A. maculatum foraging rate was strongly associated with predation risk, genetic divergence, and the spatial relationship of ponds on the landscape. Our results indicate the sorting of adaptive genotypes by selection regime and strongly suggest that substantial selective barriers operate against gene flow. This outcome suggests that microgeographic adaptation in A. maculatum is possible because strong antagonistic selection quickly eliminates maladapted phenotypes despite ongoing and substantial immigration. Increasing evidence for microgeographic adaptation suggests a strong role for selective barriers in counteracting the homogenizing influence of gene flow.  相似文献   

2.
Regional monitoring strategies frequently employ a nested sampling design where a finite set of study areas from throughout a region are selected and intensive sampling occurs within a subset of sites within the individual study areas. This sampling protocol naturally lends itself to a hierarchical analysis to account for dependence among subsamples. Implementing such an analysis using a classic likelihood framework is computationally challenging when accounting for detection errors in species occurrence models. Bayesian methods offer an alternative approach for fitting models that readily allows for spatial structure to be incorporated. We demonstrate a general approach for estimating occupancy when data come from a nested sampling design. We analyzed data from a regional monitoring program of wood frogs (Lithobates sylvaticus) and spotted salamanders (Ambystoma maculatum) in vernal pools using static and dynamic occupancy models. We analyzed observations from 2004 to 2013 that were collected within 14 protected areas located throughout the northeast United States. We use the data set to estimate trends in occupancy at both the regional and individual protected area levels. We show that occupancy at the regional level was relatively stable for both species. However, substantial variation occurred among study areas, with some populations declining and some increasing for both species. In addition, When the hierarchical study design is not accounted for, one would conclude stronger support for latitudinal gradient in trends than when using our approach that accounts for the nested design. In contrast to the model that does not account for nesting, the nested model did not include an effect of latitude in the 95% credible interval. These results shed light on the range‐level population status of these pond‐breeding amphibians, and our approach provides a framework that can be used to examine drivers of local and regional occurrence dynamics.  相似文献   

3.
Dispersal and gene flow within animal populations are influenced by the composition and configuration of the landscape. In this study, we evaluated hypotheses about the impact of natural and anthropogenic factors on genetic differentiation in two amphibian species, the spotted salamander (Ambystoma maculatum) and the wood frog (Lithobates sylvaticus) in a commercial forest in central Maine. We conducted this analysis at two scales: a local level, focused on factors measured at each breeding pond, and a landscape level, focused on factors measured between ponds. We investigated the effects of a number of environmental factors in six categories including Productivity, Physical, Land Composition, Land Configuration, Isolation and Location. Embryos were sampled from 56 spotted salamander breeding ponds and 39 wood frog breeding ponds. We used a hierarchical Bayesian approach in the program GESTE at each breeding pond and a random forest algorithm in conjunction with a network analysis between the ponds. We found overall high genetic connectivity across distances up to 17 km for both species and a limited effect of natural and anthropogenic factors on gene flow. We found the null models best explained patterns of genetic differentiation at a local level and found several factors at the landscape level that weakly influenced gene flow. This research indicates multiscale investigations that incorporate local and landscape factors are valuable for understanding patterns of gene flow. Our findings suggest that dispersal rates in this system are high enough to minimize genetic structuring and that current forestry practices do not significantly impede dispersal.  相似文献   

4.

Questions

Do livestock grazing and seasonal precipitation structure species composition in montane vernal pools? Which grazing and precipitation variables best predict cover of vernal pool specialists and species with broader habitat requirements? Is vernal pool species diversity correlated with livestock exclosure, and at what spatial scales?

Location

Montane vernal pools, northeast California, USA.

Methods

Vegetation was sampled in 20 vernal pools, including pools where livestock had been excluded for up to 20 years We compared plant species composition, functional group composition and species diversity among sites that varied in grazing history and seasonal precipitation using CCA and LMM.

Results

Although vernal pool specialists were dominant in montane vernal pools, over a third of plant cover was comprised of species that occur over a broad range of wetland or upland environments. The species composition of vernal pool plant communities was influenced by both livestock grazing and precipitation patterns, however the relative effects of these environmental variables differed by functional group. Livestock exclosures favoured perennial vernal pool specialists over annual vernal pool specialists. In contrast, the cover of habitat generalists was more strongly influenced by seasonal precipitation than livestock grazing. At small spatial scales, species richness and diversity decreased as the number of years a pool had been fenced increased, but this relationship was not significant at a larger spatial scale.

Conclusions

Both livestock grazing and seasonal precipitation structure the montane vernal pool plant community. We found that livestock grazing promotes the cover of annual vernal pool specialists, but at the expense of perennial vernal pool specialists. Wetter vernal pools, however, support higher cover of wetland generalist species regardless of whether pools are grazed.  相似文献   

5.
Pollen‐mediated gene flow is a major driver of spatial genetic structure in plant populations. Both individual plant characteristics and site‐specific features of the landscape can modify the perceived attractiveness of plants to their pollinators and thus play an important role in shaping spatial genetic variation. Most studies of landscape‐level genetic connectivity in plants have focused on the effects of interindividual distance using spatial and increasingly ecological separation, yet have not incorporated individual plant characteristics or other at‐site ecological variables. Using spatially explicit simulations, we first tested the extent to which the inclusion of at‐site variables influencing local pollination success improved the statistical characterization of genetic connectivity based upon examination of pollen pool genetic structure. The addition of at‐site characteristics provided better models than those that only considered interindividual spatial distance (e.g. IBD). Models parameterized using conditional genetic covariance (e.g. population graphs) also outperformed those assuming panmixia. In a natural population of Cornus florida L. (Cornaceae), we showed that the addition of at‐site characteristics (clumping of primary canopy opening above each maternal tree and maternal tree floral output) provided significantly better models describing gene flow than models including only between‐site spatial (IBD) and ecological (isolation by resistance) variables. Overall, our results show that including interindividual and local ecological variation greatly aids in characterizing landscape‐level measures of contemporary gene flow.  相似文献   

6.
Abstract: Pond-breeding salamanders spend most of their lives in forested habitat surrounding the vernal pools where they breed. Timber harvesting has been demonstrated to have negative impacts on salamander populations due to changes in soil temperature, soil compaction, and general degradation of habitat. However, little is known about how long it takes for harvested forest habitat to once again become suitable for salamanders. Questions also remain as to whether salamanders will use an area that has been harvested in recent years if an older intact forest area is available. We used drift fences and pitfall traps to capture adult spotted salamanders (Ambystoma maculatum) and marbled salamanders (A. opacum) migrating to 3 vernal ponds during their breeding seasons. The study area contained tracts of forest that were clear-cut 11–12 years prior to the study. All 3 ponds were surrounded by areas of clear-cut and intact forest and drift fences were placed in both habitat types. Similar numbers of spotted salamanders entered the ponds from clear-cut and intact forest areas. The number of marbled salamanders migrating to the ponds did not differ between areas of clear-cut and intact forest. These results suggest that clear-cut habitats may become suitable for adult pond-breeding salamanders after a relatively short regeneration period.  相似文献   

7.
Learning is crucial to the survival of organisms across their life span, including during embryonic development. We set out to determine when learning becomes possible in amphibian development by exposing spotted salamander (Ambystoma maculatum) embryos to chemical stimuli from a predator (Ambystoma opacum), nonpredator (Lithobates clamitans), or control at developmental stages 16–21 or 36–38 (Harrison 1969 ). Once exposures were completed and embryos hatched, we recorded the number of movements and time spent moving of individuals in both groups and all treatments. There was no significant difference in number of movements or time spent moving among any of the treatments. The groups that were exposed to predator stimuli and a blank control at stages 36–38 were also tested to determine whether there was a difference in refuge preference or difference in survivorship when exposed to a predator (marbled salamander). There was no difference in survival or refuge preference between individuals; however, all individuals preferred vegetated over open areas regardless of treatment type. We discuss hypotheses for the absence of embryonic learning in this species and suggest it may be the result of the intensity of the predator–prey interaction between the predator, large marbled salamander larvae, and the prey, spotted salamander larvae.  相似文献   

8.
Gene flow in animals is limited or facilitated by different features within the landscape matrix they inhabit. The landscape representation in landscape genetics (LG) is traditionally modeled as resistance surfaces (RS), where novel optimization approaches are needed for assigning resistance values that adequately avoid subjectivity. Also, desert ecosystems and mammals are scarcely represented in LG studies. We addressed these issues by evaluating, at a microgeographic scale, the effect of landscape features on functional connectivity of the desert‐dwelling Dipodomys merriami. We characterized genetic diversity and structure with microsatellites loci, estimated home ranges and movement of individuals using telemetry—one of the first with rodents, generated a set of individual and composite environmental surfaces based on hypotheses of variables influencing movement, and assessed how these variables relate to individual‐based gene flow. Genetic diversity and structure results evidenced a family‐induced pattern driven by first‐order‐related individuals, notably determining landscape genetic inferences. The vegetation cover and soil resistance optimized surface (NDVI) were the best‐supported model and a significant predictor of individual genetic distance, followed by humidity and NDVI+humidity. Based on an accurate definition of thematic resolution, we also showed that vegetation is better represented as continuously (vs. categorically) distributed. Hence, with a nonsubjective optimization framework for RS and telemetry, we were able to describe that vegetation cover, soil texture, and climatic variables influence D. merriami's functional connectivity at a microgeographic scale, patterns we could further explain based on the home range, habitat use, and activity observed between sexes. We describe the relationship between environmental features and some aspects of D. merriami‘s behavior and physiology.  相似文献   

9.
Fifteen tetranucleotide microsatellite loci were identified and characterized for spotted salamanders (Ambystoma maculatum) collected from three vernal pools in the south‐eastern USA. These markers revealed a high degree of genetic diversity (7–32 alleles per locus), heterozygosity (31.6–86.3%) and allelic heterogeneity (91% of comparisons were statistically significant). Considerable differentiation among populations was observed as genetic distances (chord) ranged between 0.50 and 0.65, and all FST values (0.08–0.14) were statistically significant. Moreover, genotypic assignment tests correctly classified all individuals to their respective collection. These markers should prove useful for investigating fine‐scale population structure and mating system.  相似文献   

10.
Mark C. Urban 《Oikos》2010,119(4):646-658
Spatial heterogeneity in the selection imposed by different predator species could promote the adaptive diversification of local prey populations. However, high gene flow might swamp local adaptations at limited spatial scales or generalized phenotypic plasticity might evolve in place of local diversification. Spotted salamander larvae Ambystoma maculatum face strongly varying risks from gape‐limited marbled salamander larvae Ambystoma opacum and gape‐unconstrained diving beetle larvae Dytiscus spp. across natural landscapes. To evaluate if A. maculatum adapts to these predation risk across micro‐geographic scales, I measured selection gradients in response to the two focal predators and then assayed the defensive morphologies of ten populations in a common garden experiment. I found that A. opacum induced selection on A. maculatum for larger tailfins and bodies whereas beetles induced selection for larger tail muscles and smaller bodies. In accordance with the local adaptation hypothesis, A. maculatum populations inhabiting ponds with high beetle densities grew larger tail muscles relative to other populations when raised in a common environment. However, populations exposed to strong A. opacum selection did not evolve larger tailfins as predicted. High gene flow or morphological plasticity could explain the absence of this morphological response to A. opacum. Overall, results suggest that populations can sometimes evolve adaptive traits in response to locally variable selection regimes even across the very limited distances that separate populations in this study. If prey populations often differ in their defenses against local predators, then this variation could affect the outcome of species interactions in local communities.  相似文献   

11.
Effective conservation and management of pond‐breeding amphibians depends on the accurate estimation of population structure, demographic parameters, and the influence of landscape features on breeding‐site connectivity. Population‐level studies of pond‐breeding amphibians typically sample larval life stages because they are easily captured and can be sampled nondestructively. These studies often identify high levels of relatedness between individuals from the same pond, which can be exacerbated by sampling the larval stage. Yet, the effect of these related individuals on population genetic studies using genomic data is not yet fully understood. Here, we assess the effect of within‐pond relatedness on population and landscape genetic analyses by focusing on the barred tiger salamanders (Ambystoma mavortium) from the Nebraska Sandhills. Utilizing genome‐wide SNPs generated using a double‐digest RADseq approach, we conducted standard population and landscape genetic analyses using datasets with and without siblings. We found that reduced sample sizes influenced parameter estimates more than the inclusion of siblings, but that within‐pond relatedness led to the inference of spurious population structure when analyses depended on allele frequencies. Our landscape genetic analyses also supported different models across datasets depending on the spatial resolution analyzed. We recommend that future studies not only test for relatedness among larval samples but also remove siblings before conducting population or landscape genetic analyses. We also recommend alternative sampling strategies to reduce sampling siblings before sequencing takes place. Biases introduced by unknowingly including siblings can have significant implications for population and landscape genetic analyses, and in turn, for species conservation strategies and outcomes.  相似文献   

12.
Comparative landscape genetics studies can provide key information to implement cost‐effective conservation measures favouring a broad set of taxa. These studies are scarce, particularly in Mediterranean areas, which include diverse but threatened biological communities. Here, we focus on Mediterranean wetlands in central Iberia and perform a multi‐level, comparative study of two endemic pond‐breeding amphibians, a salamander (Pleurodeles waltl) and a toad (Pelobates cultripes). We genotyped 411 salamanders from 20 populations and 306 toads from 16 populations at 18 and 16 microsatellite loci, respectively, and identified major factors associated with population connectivity through the analysis of three sets of variables potentially affecting gene flow at increasingly finer levels of spatial resolution. Topographic, land use/cover, and remotely sensed vegetation/moisture indices were used to derive optimized resistance surfaces for the two species. We found contrasting patterns of genetic structure, with stronger, finer scale genetic differentiation in Pleurodeles waltl, and notable differences in the role of fine‐scale patterns of heterogeneity in vegetation cover and water content in shaping patterns of regional genetic structure in the two species. Overall, our results suggest a positive role of structural heterogeneity in population connectivity in pond‐breeding amphibians, with habitat patches of Mediterranean scrubland and open oak woodlands (“dehesas”) facilitating gene flow. Our study highlights the usefulness of remotely sensed continuous variables of land cover, vegetation and water content (e.g., NDVI, NDMI) in conservation‐oriented studies aimed at identifying major drivers of population connectivity.  相似文献   

13.
Landscape genetics has seen tremendous advances since its introduction, but parameterization and optimization of resistance surfaces still poses significant challenges. Despite increased availability and resolution of spatial data, few studies have integrated empirical data to directly represent ecological processes as genetic resistance surfaces. In our study, we determine the landscape and ecological factors affecting gene flow in the western slimy salamander (Plethodon albagula). We used field data to derive resistance surfaces representing salamander abundance and rate of water loss through combinations of canopy cover, topographic wetness, topographic position, solar exposure and distance from ravine. These ecologically explicit composite surfaces directly represent an ecological process or physiological limitation of our organism. Using generalized linear mixed‐effects models, we optimized resistance surfaces using a nonlinear optimization algorithm to minimize model AIC. We found clear support for the resistance surface representing the rate of water loss experienced by adult salamanders in the summer. Resistance was lowest at intermediate levels of water loss and higher when the rate of water loss was predicted to be low or high. This pattern may arise from the compensatory movement behaviour of salamanders through suboptimal habitat, but also reflects the physiological limitations of salamanders and their sensitivity to extreme environmental conditions. Our study demonstrates that composite representations of ecologically explicit processes can provide novel insight and can better explain genetic differentiation than ecologically implicit landscape resistance surfaces. Additionally, our study underscores the fact that spatial estimates of habitat suitability or abundance may not serve as adequate proxies for describing gene flow, as predicted abundance was a poor predictor of genetic differentiation.  相似文献   

14.
Abstract: We assessed dispersal behavior of 78 radiotagged adult spotted salamanders (Ambystoma maculatum) at a 36-hole golf course in southeastern Connecticut, USA. Lake of Isles Golf Course is atypical of most golf courses in North America because it is much larger (461 ha) than average 18-hole golf courses (54 ha) and deciduous forests accounted for 70% landscape composition on the course. We tracked individuals an average of 164 days as they emigrated from 3 seasonal pools surrounded by golf course fairways and one pool located in contiguous forest (control pool) from March through December 2004. Males and females dispersed similar distances at the control pool, averaging 71 ± 10 m. However, females migrating across the golf course dispersed twice as far (214 ± 25 m) as males on the golf course (102 ± 15 m) and both genders at the control pool. Over 40% the salamanders at the golf course crossed fairways; thus, fairways were not a dispersal barrier to adult spotted salamanders. Previous researchers have suggested establishing a 164-m life zone around breeding ponds to protect pond-breeding amphibian populations. Our results suggest that strategies that protect core upland habitat within 164 m of wetland boundaries would include 82% of adult males and only 50% of adult females. Empirical estimates based on our telemetry study suggest that core terrestrial habitat would have to extend 370 m to protect 95% of adult females, which is much farther than previous estimates.  相似文献   

15.
Mantel‐based tests have been the primary analytical methods for understanding how landscape features influence observed spatial genetic structure. Simulation studies examining Mantel‐based approaches have highlighted major challenges associated with the use of such tests and fueled debate on when the Mantel test is appropriate for landscape genetics studies. We aim to provide some clarity in this debate using spatially explicit, individual‐based, genetic simulations to examine the effects of the following on the performance of Mantel‐based methods: (1) landscape configuration, (2) spatial genetic nonequilibrium, (3) nonlinear relationships between genetic and cost distances, and (4) correlation among cost distances derived from competing resistance models. Under most conditions, Mantel‐based methods performed poorly. Causal modeling identified the true model only 22% of the time. Using relative support and simple Mantel r values boosted performance to approximately 50%. Across all methods, performance increased when landscapes were more fragmented, spatial genetic equilibrium was reached, and the relationship between cost distance and genetic distance was linearized. Performance depended on cost distance correlations among resistance models rather than cell‐wise resistance correlations. Given these results, we suggest that the use of Mantel tests with linearized relationships is appropriate for discriminating among resistance models that have cost distance correlations <0.85 with each other for causal modeling, or <0.95 for relative support or simple Mantel r. Because most alternative parameterizations of resistance for the same landscape variable will result in highly correlated cost distances, the use of Mantel test‐based methods to fine‐tune resistance values will often not be effective.  相似文献   

16.
Kernel size is an important trait determining cereal yields. In this study, we cloned and characterized TaDA1, a conserved negative regulator of kernel size in wheat (Triticum aestivum). The overexpression of TaDA1 decreased the size and weight of wheat kernels, while its down‐regulation using RNA interference (RNAi) had the opposite effect. Three TaDA1‐A haplotypes were identified in Chinese wheat core collections, and a haplotype association analysis showed that TaDA1‐A‐HapI was significantly correlated with the production of larger kernels and higher kernel weights in modern Chinese cultivars. The haplotype effect resulted from a difference in TaDA1‐A expression levels between genotypes, with TaDA1‐A‐HapI resulting in lower TaDA1‐A expression levels. This favourable haplotype was found having been positively selected during wheat breeding over the last century. Furthermore, we demonstrated that TaDA1‐A physically interacts with TaGW2‐B. The additive effects of TaDA1‐A and TaGW2‐B on kernel weight were confirmed not only by the phenotypic enhancement arising from the simultaneous down‐regulation of TaDA1 and TaGW2 expression, but also by the combinational haplotype effects estimated from multi‐environment field data from 348 wheat cultivars. A comparative proteome analysis of developing transgenic and wild‐type grains indicated that TaDA1 and TaGW2 are involved in partially overlapping but relatively independent protein regulatory networks. Thus, we have identified an important gene controlling kernel size in wheat and determined its interaction with other genes regulating kernel weight, which could have beneficial applications in wheat breeding.  相似文献   

17.
Habitat loss and fragmentation negatively impact the size and diversity of many natural populations. Woodland amphibians require connected aquatic and terrestrial habitats to complete their life cycle, and often rely on metapopulation structure for long‐term persistence. Wetland loss and deforestation fragment amphibian populations, which may result in population isolation and its negative effects. The aim of this research was to analyze the population genetic structure of small‐mouthed salamanders (Ambystoma texanum) in western Ohio, where agriculture is now the dominant land use. Salamander tail tissue was collected from eight breeding pools. Three pools occur in the same forest; the other five are in forest patches at distances ranging from 250 m to 20 km from one another. Eight microsatellite loci were amplified by PCR and genotyped for allele size. Observed heterozygosities were lower than expected in all sampled populations; the two most isolated sites (Ha1, Ha2) had the highest inbreeding coefficients. Ha2 also had the lowest mean number of alleles and was found to be genetically differentiated from populations to which our data analysis indicates it was historically connected by gene flow. The most distant site (Ha1) had the highest number of private alleles and showed genetic differentiation from other populations both historically and currently. Geographic distance between pools was strongly correlated with the number of private alleles in a population. The results suggest that population isolation results in decreased genetic diversity and that a breakdown of metapopulation structure due to landscape change may contribute to differentiation between once‐connected populations.  相似文献   

18.
1. Amphibian populations residing in or near agricultural areas are often susceptible to pesticide contamination. Recent evidence suggests that the effects of pesticides on amphibians often exceed those estimated in laboratory toxicity tests because other environmental factors (e.g. predators, resource abundance) can influence pesticide toxicity. 2. To examine the effects of an insecticide (carbaryl) on two species of Ambystoma salamanders experiencing the natural stress of competition, we manipulated chemical concentration (control, 3.5 and 7.0 mg L?1) and larval density (low and high). We determined the effect of treatments on snout‐vent length (SVL), growth rate, lipid reserves, time to metamorphosis, per cent survival and per cent metamorphosis. 3. Carbaryl negatively affected all response variables of Ambystoma maculatum significantly, and significantly reduced survival and metamorphosis of A. opacum. Increased density significantly influenced SVL, lipid reserves, growth rate and metamorphosis of A. maculatum. 4. The effects of carbaryl and increased density on per cent metamorphosis were nearly additive, but were generally less than additive on other variables. 5. The negative effects of chemical contamination on salamanders were likely because of pesticide‐induced reductions of food resources, as zooplankton abundance decreased by as much as 97% following carbaryl application. 6. Our study demonstrates the importance of the interactive effects that chemical contamination and natural environmental factors have on salamanders.  相似文献   

19.
JL Richardson 《Molecular ecology》2012,21(18):4437-4451
The physical and environmental attributes of landscapes often shape patterns of population connectivity by influencing dispersal and gene flow. Landscape effects on movement are typically evaluated for single species. However, inferences from multiple species are required for multi‐species management strategies increasingly being applied in conservation. In this study, I compared the spatial genetic patterns of two amphibian species across the northeastern United States and estimated the influence of specific landscape features on the observed genetic structure. The spotted salamander (Ambystoma maculatum) and wood frog (Rana sylvatica) share many ecological attributes related to habitat use, phenology and site fidelity. However, I hypothesized that important differences in their movement patterns and life history would create distinct genetic patterns for each species. Using 14 microsatellite loci, I tested for differences in the level of genetic differentiation between the two species across 22 breeding ponds. The effects of eight landscape features were also estimated by evaluating 32 landscape resistance models. Spotted salamanders exhibited significantly higher genetic differentiation than wood frogs. Different landscape features were also identified as potential drivers of the genetic patterns in each species, with little overlap in model support between species. Collectively, these results provide strong evidence that these two amphibian species interact with the landscape in measurably different ways. The distinct genetic patterns observed are consistent with key differences in movement ability and life history between A. maculatum and R. sylvatica. These results highlight the importance of considering more than one species when assessing the impacts of the landscape matrix on population connectivity, even for ecologically similar species within the same habitats.  相似文献   

20.
This study compared the hydrology, physiochemistry, and amphibian biomass between a complex of created vernal pools and a complex of natural vernal pools in 2007 in central Ohio, United States. Hydrologic connectivity of surface water and groundwater differed between the natural and the created pool complexes. Surface inundation duration for created pools exceeded that of natural pools, although spring water depths were similar. Dissolved oxygen (p= 0.05) and hourly temperature (p= 0.00) were 1.2% and 1.1% higher, respectively, in the created pools, and conductivity was 1.5% higher (p= 0.00) in the natural pools. Amphibian dip net results found no significant difference in biomass between natural and created pools or family (hylid, ranid, and ambystomatid) biomass in both pool types. Amphibian families were evenly represented by both capture methods in the created wetlands; however, the distribution of families was not even in natural pools and the proportion of ranids was four times greater for samples obtained by funnel traps than dip netting. Eleven years after construction, the created vernal pools did not mimic natural pools in surface inundation and groundwater–surface water exchange, dissolved oxygen, and water temperature. The created pools are perched wetlands and are never likely to mimic reference pool hydrology. Dissolved oxygen and temperature differences are likely due to the separation of surface water and groundwater in the created pools. However, the created pools exhibited a higher taxa diversity than the natural pools due to a more even distribution of organisms between the three families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号