首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of spermine (Sp) on the acid-induced predenaturational and denaturational transitions in the DNA molecule structure has been studied by means of circular dichroism, spectrophotometric and viscometric titration at supporting electrolyte concentration 10 mM NaCl. The data available indicate that at [N]/[P] less than or equal to 0.60 (here [N] and [P] are molar concentrations of Sp nitrogen and DNA phosphours, respectively) the cooperative structural B----B(+)----S transitions are accompanied by the DNA double-helice winding. No competition for proton acceptor sites in the DNA molecule between H+ and Sp4+ cations has been observed when binding to neutral macromolecule. At 0.60 less than or equal to [N]/[P] less than or equal to 0.75 the displacement of the B----B(+)----S transitions midpoints to acidic pH region has been established. This is accompanied by DNA condensation and the appearance of differential scattering of circularly polarized light. The calculations carried out in the framework of the two-variable Manning theory have shown that the acid-induced reduction of the effective polyion charge density facilitates the Sp-induced DNA condensation. It has been shown that the acid-base equilibrium in the DNA molecule is determined by local [H+] in the 2-3 A hydrated monolayer of the macromolecule. An adequate estimation of [H+] can be obtained on the basis of the Poisson-Boltzman approach. The data obtained are consistent with recently proposed hypothesis of polyelectrolyte invariance of the acid-base equilibrium in the DNA molecule.  相似文献   

2.
The DNA conformation was studied at different relation between Na+ and Me2+ (Mn2+ or Mg2+) ions in solution at the fixed total ionic strength mu. At low mu the intrinsic viscosity of DNA [eta] decreased to the limited fixed value with the increasing of Mn2+ or Mg2+ concentration (CMe2+). At higher mu greater than or equal to 0.1 M [eta] doesn't depend on CMe2+. The presence of Mn2+ in solution caused a decrease of the optical anisotropy of DNA and the value of epsilon 260 (p) independent on ionic strengths. In contrary, these parameters of DNA didn't change in solution with Mg2+-concentration. The observed differences in the effects of Mn2+ and Mg2+ on the optical properties of the macromolecule suggest that there are different modes of binding of these ions to DNA. It has been concluded, that Mn2+ interacts with bases and phosphate groups of DNA, but Mg2+--only with phosphates. The persistence length of DNA doesn't depend on Me2+ concentration under the conditions of the experiment (mu greater than or equal to 0.005 M).  相似文献   

3.
The hysteresis observed in cyclic acid-base titrations of the three-standed polyribonucleotide helix poly (A)-2 POLY (U) strongly depends on ionic strength. For NaCl and at 25 degrees C, hysteresis occurs in the limited concentration range between 0.03 M and 1.0 M(NaCl). The transition points associated with the cyclic conversions between the triple helix and the poly (A)-poly (A) double helix and (free) poly (U) constitute a (pH ionic strength) phase diagram covering the ranges of stability and metastability of the hysteresis system. Variations with NaCl concentration of some hysteresis parameters can be quantitatively described in terms of polyelectrolyte theories based on the cylinder-cell model for rodlike polyions. The results of this analysis suggest that the metastability is predominantly due to dlectrostatic energy barriers preventing the equilibrium transition of the partially protonated triple helix above a critical pH value. Ultraviolet absorbance and potentiometric titration data of poly (A)in the acidic pH range can be analyzed in terms of two types of double-helical structures. Spectrophotometric titrations reveal isosbestic wavelengths for structural transitions of poly (A). "Time effects" commonly observed in poly (A) titrations are suggested to reflect helix transitions between the two acidic structures.  相似文献   

4.
Methods of intrinsic viscosity [eta] and beam flow birefringence were used to study the effects of some single-charged ions (F-, Cl-, Br-, J-, NO2-, NO3-, ClO4-, SCN-, CH3COO-) on the size and thermodynamic rigidity of DNA molecule in aqueous solutions of sodium salts in a broad interval of ionic strength mu when temperature T is changed. It has been shown that the close interactions in a macromolecule and the resulting persistent length a of DNA are independent of the type of the salt anion over the whole interval of mu. On the contrary, specific volume of DNA molecule in solution, proportional to [eta] value, is quite sensitive to the anionic composition of a solvent which is due to the effect of anions and their hydration on the remote interactions in the macromolecule. The presence of polyatomic and halide anions is manifested differently in the [eta] value of DNA. Possible factors responsible for the observed effect and the role of structural alterations of water upon anion hydration are discussed.  相似文献   

5.
The effects of pH, ionic strength, stain concentration, magnesium concentration, and various fixative agents on DNA staining with the fluorescent antibiotics olivomycin, chromomycin A3, and mithramycin were examined with DNA in solution and in mammalian cells. Ethanol-fixed Chinese hamster cell populations (line CHO) stained with mithramycin and analyzed by flow cytometry provided DNA distribution patterns with a high degree of resolution. Glutaraldehyde-fixed cells exhibited about one-half the fluorescence intensity of ethanol-fixed cells; however, the percentages of cells in G1, S, and G2 + M were comparable. DNA distributions obtained for formalin-fixed cells were unacceptable for computer analysis. Cell staining over a pH range of 5-9 in solutions containing 0.15-1 M NaCl and 15-200 mM MgCl2 provided optimal results based on the DNA profiles obtained by flow cytometry. The intensity of cells stained in 1 M NaCl was one and one-half times greater than cells stained in the absence of NaCl; however, spectrophotofluorometric analysis of mithramycin-magnesium-DNA complexes in solution revealed no significant changes in fluorescence intensity over a range of 0-1.75 M NaCl. These results and those obtained by flow cytometry analysis indicate that the increase in fluorescence of stained cells as a function of increasing ionic strength is due to changes in chromatin structure, providing a larger number of binding sites for the dye-magnesium complex.  相似文献   

6.
Transitions between isotropic and liquid crystalline phases of concentrated solutions of DNA with an average contour length (500 A) near the persistence length were examined in 0.01 M supporting 1:1 electrolyte (predominantly NaCl). A quantitative phase diagram describing the transitions occurring over a DNA concentration range from 100 to 290 mg/mL and temperatures from 20 to 60 degrees C was constructed from solid-state 31P-nmr data and examination of the morphologies of the mesophases by polarized light microscopy. Three anisotropic phases were observed in solutions with DNA concentrations of 160-290 mg/mL: an unidentified, weakly birefringent phase termed "precholesteric," a true cholesteric phase with pitch approximately 2 microns, and a third, presumably more highly ordered phase. Comparison with previous studies showed that the critical concentration for anisotropic phase formation and the nature of the phases formed by these DNA molecules are not strongly affected by decreasing the supporting electrolyte concentration from approximately 0.2 M to 10 mM. There are, however, profound effects of decreasing the supporting electrolyte concentration on the width of the transition from isotropic to totally anisotropic solutions, and the nature of the transitions between phases. Decreasing the supporting electrolyte concentration significantly increases the concentration range of persistence of the isotrophic phase, and results in the formation of triphasic solutions (isotropic and two liquid crystalline phases). Values of the critical DNA concentrations for anisotropic phase formation from the theory of A. Stroobants et al. [(1986) Macromolecules 19, 2232 to 2238] were found to be significantly lower than the observed values for any reasonable estimate of the effective radius, probably because of the relatively short lengths of DNA fragments examined in the present study. Comparison of the experimentally determined DNA concentrations required for anisotropic phase formation with the values predicted from Flory's lattice statistics theory, which explicitly considers the rod length, permitted estimation of the effective DNA radius. The estimated radius was inconsistent with effective radii calculated from Poisson-Boltzmann (P-B) theory based on a supporting electrolyte concentration of 10 mM, but was in fair agreement with P-B theory assuming that Na+ DNA contributes approximately 0.24 Na+ counterions/nucleotide to the effective free sodium ion concentration.  相似文献   

7.
The adsorption of a strong, highly charged cationic polyelectrolyte to a kraft lignin thin film was investigated as a function of the adsorbing solution conditions using the quartz crystal microbalance. The polyelectrolyte, PDADMAC, with a molecular weight of 100 kDa and one cationic charge group per monomer, was adsorbed to the anionically charged lignin film in the pH range 3.5-9.5 in electrolyte solution of 0.1 to 100 mM NaCl. At low pH, the adsorbed amount of PDADMAC was minimal, however, this increased as a function of increasing pH. Indeed, the surface excess increased significantly at about pH 8.5, where ionization of the phenolic groups on the lignin macromolecule may be expected. Furthermore, at this elevated pH, the adsorbed amount of PDADMAC decreased as the ionic strength of the solution increased above 1 mM. This is due to the competitive adsorption of counterions to the lignin surface and indicates that the adsorption of PDADMAC to lignin is of a pure electrosorption nature.  相似文献   

8.
The conformation of the denatured DNA molecule of different molecular weights in the solutions of various ionic composition was studied by the methods of viscometry, light scattering and flow birefringence. Formaldehyde purified from metallic ions with the help of ionites was used for fixation of the denatured state of the DNA molecule. It has been shown that theories developed for flexible macromolecules are in a sufficient accordance with hydrodynamical and optical data. The unperturbed dimensions, equilibrium rigidity of the macromolecule in solutions of different ionic strengths, mu, were determined. In the range of mu greater than or equal to 0.005 the length of Kuhn's segment (A) is equal to approximately 40 A and its value increases with an increase of mu. At mu 0.001 A approximately 60 A and mu 0.0005 A approximately 85 divided by 100 A. A relation between intrinsic viscosity and molecular weight of the denatured DNA molecule was established. Data on the flow birefringence in the solutions of the denatured DNA have shown that the sigh of optical anisotrophy of the macromolecule depends on the ionic strength. The observed dependency may be explained only by assuming that ionic strength influences the equilibrium orientation of nitrogen base planes with respect to the main chain of the macromolecule.  相似文献   

9.
Transfer of DNA (from 0.1 to 10 micrograms) from diluted solutions of variable volumes (1-10 ml) and various composition (2 M NaCl; 4 M LiCl, 8 M urea; 4 M CsCl; 20% sucrose) to nitrocellulose or nylon membranes was achieved with the use of hydroxyapatite. This absorbent that binds nucleic acids effectively and independently of ionic strength and composition of solution (except for chelators and phosphate ions) easily dissolves in small volumes of acids (for example, in 10% TCA). This phenomenon provides the opportunity to deliver the acid-insoluble precipitates to membrane filters. After alkaline denaturation on the filter followed by a fixation step (baking or UV irradiation for nitrocellulose or nylon filters, respectively), DNA hybridizes effectively with nick-translated DNA probes. The method is simple, reproducible, sensitive, and useful for working with diluted DNA solutions containing interfering substances.  相似文献   

10.
PolyGC was titrated with a strong base in the presence of increasing concentrations of NaCl (from 0.00 to 0.60M) either in water solution or with the polynucleotide solubilized in the aqueous core of reverse micelles, i.e., the cationic quaternary water-in-oil microemulsion CTAB/n-hexane/n-pentanol/water. The results for matched samples in the two media were compared. CD and UV spectroscopies and, for the solution experiments, pH measurements were used to follow the course of deprotonation. In both media the primary effect of the addition of base was denaturation of the polynucleotide, reversible by back-titration with a strong acid. In solution, the apparent pK(a) of the transition decreases with increasing the salt concentration and a roughly linear dependence of pK(a) on p[NaCl] has been found. A parallel monotonic decay with ionic strength has been found in solution for R(OH), defined as the number of hydroxyl ions required per monomeric unit of polyGC to reach half-transition. By contrast, in microemulsion, R(OH) has been found to be independent of the NaCl concentration (and 10 to 50 times lower than in solution). This result is proposed as an indirect evidence of the independence of pK(a) on the salt concentration in microemulsion, where the pH cannot be measured. A sort of buffering effect of the positive charges on the micellar wall and of their counter-ions on the ionic strength could well explain this discrepancy of behavior in the two media.  相似文献   

11.
1. Human bronchial lysozyme was isolated from nonpurulent secretions and studied by circular dichroism (CD) spectroscopy for its conformational properties. 2. The two negative bands at 208 and 222 nm indicated that the peptide chain adopted an alpha-helical structure in physiological conditions. 3. The molecule was stable at pH 1.0 but not at pH 12.0. 4. Increasing ionic strength by adding NaCl up to 1 M did not change the CD spectra. 5. Complete unfolding of the molecule by guanidinium chloride was obtained only at the concentration of 6 M. 6. Bronchial lysozyme was also denatured by sodium dodecyl sulphate. 7. The molecule was stable when mild reduction was performed at 37 degrees C for 30 min but was completely unfolded after heating at 100 degrees C for 3 min.  相似文献   

12.
Micrococcus luteus UV endonuclease incises DNA at the sites of ultraviolet (UV) light-induced pyrimidine dimers. The mechanism of incision has been previously shown to be a glycosylic bond cleavage at the 5'-pyrimidine of the dimer followed by an apyrimidine endonuclease activity which cleaves the phosphodiester backbone between the pyrimidines. The process by which M. luteus UV endonuclease locates pyrimidine dimers within a population of UV-irradiated plasmids was shown to occur, in vitro, by a processive or "sliding" mechanism on non-target DNA as opposed to a distributive or "random hit" mechanism. Form I plasmid DNA containing 25 dimers per molecule was incubated with M. luteus UV endonuclease in time course reactions. The three topological forms of plasmid DNA generated were analyzed by agarose gel electrophoresis. When the enzyme encounters a pyrimidine dimer, it is significantly more likely to make only the glycosylase cleavage as opposed to making both the glycosylic and phosphodiester bond cleavages. Thus, plasmids are accumulated with many alkaline-labile sites relative to single-stranded breaks. In addition, reactions were performed at both pH 8.0 and pH 6.0, in the absence of NaCl, as well as 25,100, and 250 mM NaCl. The efficiency of the DNA scanning reaction was shown to be dependent on both the ionic strength and pH of the reaction. At low ionic strengths, the reaction was shown to proceed by a processive mechanism and shifted to a distributive mechanism as the ionic strength of the reaction increased. Processivity at pH 8.0 is shown to be more sensitive to increases in ionic strength than reactions performed at pH 6.0.  相似文献   

13.
The surface positive charges of human lysozyme were either increased or decreased to alter the electrostatic interaction between enzyme and substrate in the lytic action of human lysozyme using site-directed mutagenesis. The amino acid substitutions accompanying either the addition or the removal of two units of positive charge have shifted the optimal ionic strength (NaCl concentration in 10 mM Mes buffer, pH 6.2) for the lysis of Micrococcus lysodeikticus cell from 0.04 M to 0.1 M and from 0.04 M to 0.02 M respectively. In addition to the change in ionic strength-activity profile, the pH-activity profile and the effect of a polycationic electrolyte, poly-L-Lys-HCl, on the lytic activity were significantly changed. Owing to the shifts in both ionic strength profiles and pH profiles the Arg74/Arg126 mutant has become a better catalyst than wild-type enzyme under the conditions of high ionic strength and high pH, and the Gln41/Ser101 mutant has become a better catalyst under the conditions of low ionic strength and low pH.  相似文献   

14.
Polyamines favor DNA triplex formation at neutral pH   总被引:15,自引:0,他引:15  
K J Hampel  P Crosson  J S Lee 《Biochemistry》1991,30(18):4455-4459
The stability of triplex DNA was investigated in the presence of the polyamines spermine and spermidine by four different techniques. First, thermal-denaturation analysis of poly[d(TC)].poly[d(GA)] showed that at low ionic strength and pH 7, 3 microM spermine was sufficient to cause dismutation of all of the duplex to the triplex conformation. A 10-fold higher concentration of spermidine produced a similar effect. Second, the kinetics of the dismutation were measured at pH 5 in 0.2 M NaCl. The addition of 500 microM spermine increased the rate by at least 2-fold. Third, in 0.2 M NaCl, the mid-point of the duplex-to-triplex dismutation occurred at a pH of 5.8, but this was increased by nearly one pH unit in the presence of 500 microM spermine. Fourth, intermolecular triplexes can also form in plasmids that contain purine.pyrimidine inserts by the addition of a single-stranded pyrimidine. This was readily demonstrated at pH 7.2 and 25 mM ionic strength in the presence of 100 microM spermine or spermidine. In 0.2 M NaCl, however, 1 mM polyamine is required. Since, in the eucaryotic nucleus, the polyamine concentration is in the millimolar range, then appropriate purine-pyrimidine DNA sequences may favor the triplex conformation in vivo.  相似文献   

15.
Electrophoresis measurements on Micrococcus lysodeikticus have shown that the net surface charge density on the cell wall is constant at around -1.5 microC/cm2 for the pH range 4-8. This result has enabled a quantitative analysis to be made of how the electrostatic field associated with the negatively charged cell wall influences the ionic strength and pH dependency of the lytic activity of lysozyme towards M. lysodeikticus. A dominant effect is the creation of a local pH gradient at the cell wall, and at high ionic strengths the lytic activity is found to be controlled by an electrostatic force of attraction between the lysozyme molecule and the cell wall. As the ionic strength of the supporting electrolyte is decreased, however, an electrostatic force of repulsion becomes dominant and is associated with a negative charge carried by the lysozyme molecule, which could possibly be the ionized Asp-52 residue at the active site. This is considered to arise from the fact that at low ionic strengths the fine details of the heterogeneous charge distribution on the cell wall and lysozyme molecule are only partially screened by counter ions.  相似文献   

16.
Suzuki M  Yokoyama K  Lee YH  Goto Y 《Biochemistry》2011,50(47):10390-10398
Microbial transglutaminase (MTG) is a monomeric globular enzyme made of 331 amino acid residues. The conformation of MTG was examined over the pH 2.0-6.0 region using circular dichroism (CD) and 1-anilino-8-naphthalenesulfonate (ANS). Under conditions of low ionic strength, a decrease of pH below 4 caused a stepwise unfolding with an intermediate exhibiting specific ANS-binding before full unfolding at pH 2.0. At high ionic strength, the decrease of pH led to only an intermediate without further unfolding. The intermediate corresponds to the molten globule state with a secondary structure similar to the native state but disordered tertiary structures. A pH- and NaCl concentration-dependent phase diagram showed that the fully unfolded state exists only under limited conditions of low pH and a low NaCl concentration. Although a refolding yield by the direct jump to pH 6.0 was low, a two-step refolding with incubation at pH 4.0, where MTG is marginally stable, and a subsequent jump to pH 6.0 improved the yield by suppressing the kinetic traps. We propose that the two-step refolding is useful for improving the yield of larger proteins with a high pI value.  相似文献   

17.
The binding of high mobility group (HMG) protein 17 to the nucleosome core particle has been studied in D2O solution using 1H NMR at 500 MHz. Spectra were obtained for purified HMG 17, purified nucleosome core particles, and the reconstituted HMG 17-nucleosome core particle complex at 0.1, 0.2, 0.3, and 0.4 M NaCl. Subtraction of the core particle spectra from spectra of the core particle reconstituted with HMG 17 demonstrated those regions of HMG 17 which interact with the nucleosome at different ionic strengths; the resonance peaks of interacting groups are broadened due to their restricted mobility. At 0.1 M NaCl, the mobility of all the amino acid side chains of HMG 17 was restricted, indicating complete binding of HMG 17 to the much larger nucleosome core particle. At 0.2 M NaCl most of the amino acids were free with the exception of arginine and proline which are confined to or predominant in the basic central region of HMG 17. These amino acids were completely free only at 0.4 M NaCl. We conclude that the entire HMG 17 molecule interacts with the nucleosome core particle at physiological ionic strength. The acidic COOH-terminal region of HMG 17 is released from interaction with the core histones at an NaCl concentration between 0.1 and 0.2 M and so binds weakly at physiological ionic strength. The basic central region binds more strongly to the core particle DNA, being completely released only at much higher ionic strength, between 0.3 and 0.4 M NaCl.  相似文献   

18.
Abstract

PolyGC was titrated with a strong base in the presence of increasing concentrations of NaCl (from 0.00 to 0.60M) either in water solution or with the polynucleotide solubilized in the aqueous core of reverse micelles, i.e., the cationic quaternary water-in-oil microemulsion CTAB/n-hexane/n-pentanol/water. The results for matched samples in the two media were compared. CD and UV spectroscopies and, for the solution experiments, pH measurements were used to follow the course of deprotonation. In both media the primary effect of the addition of base was denaturation of the polynucleotide, reversible by back-titration with a strong acid.

In solution, the apparent pKa of the transition decreases with increasing the salt concentration and a roughly linear dependence of pKa on p[NaCl] has been found. A parallel monotonic decay with ionic strength has been found in solution for ROH, defined as the number of hydroxyl ions required per monomeric unit of polyGC to reach half-transition. By contrast, in microemulsion, ROH has been found to be independent of the NaCl concentration (and 10 to 50 times lower than in solution). This result is proposed as an indirect evidence of the independence of pKa on the salt concentration in microemulsion, where the pH cannot be measured. A sort of buffering effect of the positive charges on the micellar wall and of their counter-ions on the ionic strength could well explain this discrepancy of behavior in the two media.  相似文献   

19.
E C Ong  C Snell  G D Fasman 《Biochemistry》1976,15(3):468-477
The ionic strength dependence of the complexes between DNA and both random, (Lysx, Leuy)n, and block copolymers, (Lysx)n(Leuy)m, of lysine and leucine, with different amino acid compositions, was studied using circular dichroism (CD) as the probe to detect conformational differences in these complexes relative to native DNA. It was found that the CD spectra of complexes of both the random (Lys84, Leu16)n and block (Lys85)n(Leu15)m copolymers with DNA show a very sharp ionic strength dependence. The maximum altered CD spectrum for the complexes with the block copolymer was found to occur at the same ionic strength as that for poly(L-lysine)-DNA complexes, while the maximum CD change for the random copolymer complex occurred at a slightly lower ionic strength. This sharp dependence of the CD change on the ionic strength was found to be independent of the polymer/DNA ratio, r, for each individual copolymer. The CD spectra for these complexes at optimum NaCl concentration resemble those of the psi spectra of DNA [Jordan, C. F., Lerman, L.S., and Venable, J.H. (1972), Nature (London), New Biol. 236, 67]. The complexes of the random copolymer, (Lys68, Leu32)n, with DNA (r=0.25) at 0.15 M NaCl and below have CD spectra that resemble the A-form DNA spectra. The ionic strength dependence of the CD spectra of this complex is not as sharp as observed with the above polymers and has a broad positive plateau. It is suggested that both the CD spectra of these complexes reflect the phenomena of DNA condensation into a higher order asymmetric structure (folded and compact). The block copolymer, (Lys77)n(Leu23)m, complexes with DNA show very slight alterations in the CD spectra, with respect to native DNA. It appears that the long Leu sequence at one end of such copolymers may be unpropitious for causing the polypeptide-DNA complex to condense into a higher order asymmetric structure. Thus the importance of the distribution of hydrophobic residues, in the copolypeptides of Lys, is shown for causing condensation of complexes with DNA. The relevance of these findings to histone-DNA complexes in chromatin is discussed.  相似文献   

20.
Solution and surface effects on plasma fibronectin structure   总被引:2,自引:1,他引:1       下载免费PDF全文
As assessed by electron microscopy, the reported shape of the plasma fibronectin molecule ranges from that of a compact particle to an elongated, rod-like structure. In this study, we evaluated the effects of solution and surface conditions on fibronectin shape. Freeze-dried, unstained human plasma fibronectin molecules deposited at pH 7.0-7.4 onto carbon films and examined by scanning transmission electron microscopy appeared relatively compact and pleiomorphic, with approximate average dimensions of 24 nm X 16 nm. Negatively stained molecules also had a similar shape but revealed greater detail in that we observed irregular, yarn-like structures. Glutaraldehyde-induced intramolecular cross-linking did not alter the appearance of plasma fibronectin. Molecules deposited at pH 2.8, pH 9.3, or after succinylation were less compact than those deposited at neutral pH. In contrast, fibronectin molecules sprayed onto mica surfaces at pH 7, rotary shadowed, and examined by transmission electron microscopy were elongated and nodular with a contour length of 120-130 nm. Sedimentation velocity experiments and electron microscopic observations indicate that fibronectin unfolds when it is succinylated, when the ionic strength is raised at pH 7, or when the pH is adjusted to 9.3 or 2.8. Greater unfolding is observed at pH 2.8 at low ionic strength (less than 0.01) compared with material at that pH in 0.15 M NaCl solution. We conclude that (a) the shape assumed by the fibronectin molecule can be strongly affected by solution conditions and by deposition onto certain surfaces; and that (b) the images of fibronectin seen by scanning transmission electron microscopy at neutral pH on carbon film are representative of molecules in physiologic solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号