首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Herpesviruses have evolved numerous immune evasion strategies to facilitate establishment of lifelong persistent infections. Many herpesviruses encode gene products devoted to preventing viral antigen presentation as a means of escaping detection by cytotoxic T lymphocytes. The human herpesvirus-7 (HHV-7) U21 gene product, for example, is an immunoevasin that binds to class I major histocompatibility complex molecules and redirects them to the lysosomal compartment. Virus infection can also induce the upregulation of surface ligands that activate NK cells. Accordingly, the herpesviruses have evolved a diverse array of mechanisms to prevent NK cell engagement of NK-activating ligands on virus-infected cells. Here we demonstrate that the HHV-7 U21 gene product interferes with NK recognition. U21 can bind to the NK activating ligand ULBP1 and reroute it to the lysosomal compartment. In addition, U21 downregulates the surface expression of the NK activating ligands MICA and MICB, resulting in a reduction in NK-mediated cytotoxicity. These results suggest that this single viral protein may interfere both with CTL-mediated recognition through the downregulation of class I MHC molecules as well as NK-mediated recognition through downregulation of NK activating ligands.  相似文献   

2.
Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP) plays an essential role in MHC class I-restricted antigen presentation, as TAP imports peptides into the ER, where peptide loading of MHC class I molecules takes place. In this study, the UL 49.5 proteins of the varicelloviruses bovine herpesvirus 1 (BHV-1), pseudorabies virus (PRV), and equine herpesvirus 1 and 4 (EHV-1 and EHV-4) are characterized as members of a novel class of viral immune evasion proteins. These UL 49.5 proteins interfere with MHC class I antigen presentation by blocking the supply of antigenic peptides through inhibition of TAP. BHV-1, PRV, and EHV-1 recombinant viruses lacking UL 49.5 no longer interfere with peptide transport. Combined with the observation that the individually expressed UL 49.5 proteins block TAP as well, these data indicate that UL 49.5 is the viral factor that is both necessary and sufficient to abolish TAP function during productive infection by these viruses. The mechanisms through which the UL 49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 block TAP exhibit surprising diversity. BHV-1 UL 49.5 targets TAP for proteasomal degradation, whereas EHV-1 and EHV-4 UL 49.5 interfere with the binding of ATP to TAP. In contrast, TAP stability and ATP recruitment are not affected by PRV UL 49.5, although it has the capacity to arrest the peptide transporter in a translocation-incompetent state, a property shared with the BHV-1 and EHV-1 UL 49.5. Taken together, these results classify the UL 49.5 gene products of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms.  相似文献   

3.
4.
The in vivo persistence of gene-modified cells may be limited by the development of a host immune response to vector-encoded proteins. Herpesviruses evade cytotoxic T-lymphocyte (CTL) recognition by expressing genes which interfere selectively with presentation of viral antigens by class I major histocompatibility complex (MHC) molecules. Here, we studied the use of retroviral vectors encoding herpes simplex virus ICP47, human cytomegalovirus (HCMV) US3, or HCMV US11 to decrease presentation of viral proteins and transgene products to CD8(+) CTL. Human fibroblasts and T cells transduced to express the ICP47, US3, or US11 genes alone exhibited a decrease in cell surface class I MHC expression. The combination of ICP47 and US11 rendered fibroblasts negative for surface class I MHC and allowed a class I MHC-low population of T cells to be sorted by flow cytometry. Fibroblasts and T cells expressing both ICP47 and US11 were protected from CTL-mediated lysis and failed to stimulate specific memory T-cell responses to transgene products in vitro. Our findings suggest that expression of immunoregulatory viral gene products could be a potential strategy to prolong transgene expression in vivo.  相似文献   

5.
Modulation of host immune responses has emerged as a common strategy employed by herpesviruses both to establish life-long infections and to affect recovery from infection. Herpes simplex virus 1 (HSV-1) blocks the major histocompatibility complex (MHC) class I antigen presentation pathway by inhibiting peptide transport into the endoplasmic reticulum. The interaction of viral gene products with the MHC class II pathway, however, has not been thoroughly investigated, although CD4(+) T cells play an important role in human recovery from infection. We have investigated the stability, distribution, and state of MHC class II proteins in glioblastoma cells infected with wild-type HSV-1 or mutants lacking specific genes. We report the following findings. (i) Wild-type virus infection caused a decrease in the accumulation of class II protein on the surface of cells and a decrease in the endocytosis of lucifer yellow or dextran conjugated to fluorescein isothiocyanate but no decrease in the total amount of MHC class II proteins relative to the levels seen in mock-infected cells. (ii) Although the total amount of MHC class II protein remained unchanged, the amounts of cell surface MHC class II proteins were higher in cells infected with the U(L)41-negative mutant, which lacks the virion host shutoff protein, and especially high in cells infected with the gamma(1)34.5-negative mutant. We conclude that infected cells attempt to respond to infection by increased acquisition of antigens and transport of MHC class II proteins to the cell surface and that these responses are blocked in part by the virion host shutoff protein encoded by the U(L)41 gene and in large measure by the direct or indirect action of the infected cell protein 34.5, the product of the gamma(1)34.5 gene.  相似文献   

6.
A crucial feature of peptide antigen presentation by major histocompatibilty complex (MHC) class I and II molecules is their differential ability to sample cytosolic and extracellular antigens. Intracellular viral infections and bacteria that are taken up in phagosomes, but then escape from the endocytic compartment efficiently, enter the class I pathway via the cytosol. In contrast, phagosome-resident bacteria yield protein antigens that are sampled deep in the endocytic compartment and presented in a vacuolar acidification-dependent pathway mediated by MHC class II molecules. Despite this potential for antigen sampling, microbes have evolved a variety of evasive mechanisms that affect peptide transport in the MHC class I pathway or blockade of endosomal acidification and inhibition of phagosome–lysosome fusion that may compromise the MHC class II pathway of antigen presentation. Thus, besides MHC class I and II, a third lineage of antigen-presenting molecules that bind lipid and glycolipid antigens rather than peptides exists and is mediated by the family of CD1 proteins. CD1 isoforms (CD1a, b, c, and d) differentially sample both recycling endosomes of the early endocytic system and late endosomes and lysosomes to which lipid antigens are differentially delivered. These CD1 pathways include vacuolar acidification-independent pathways for lipid antigen presentation. These features of presenting lipid antigens, independently monitoring various antigen-containing intracellular compartments and avoiding certain evasive techniques employed by microbes, enable CD1 molecules to provide distinct opportunities to function in host defense against the microbial world.  相似文献   

7.
The Kaposi's sarcoma-associated herpes virus gene product K3 (KK3) subverts the MHC class I antigen presentation pathway by downregulating MHC class I from the plasma membrane. We now show that KK3 associates with MHC class I molecules and promotes ubiquitylation of class I after export from the endoplasmic reticulum. Ubiquitylation requires the KK3 N-terminal plant homeodomain and provides the signal for class I internalization at the plasma membrane. Once internalized, ubiquitylated MHC class I is targeted to the late endocytic pathway, where it is degraded. Depletion by small interfering RNA of TSG101, a ubiquitin enzyme 2 variant protein involved in late endosomal sorting, prevents class I degradation and preserves cell surface class I expression in KK3-expressing cells. These results suggest a mechanism by which the KK3-induced class I ubiquitylation provides a signal for both internalization and sorting to the late endosomal pathway for degradation. KK3 is the first viral gene product that subverts the trafficking of a host protein via the ubiquitin-dependent endosomal sorting machinery.  相似文献   

8.
While interference with the class I MHC pathway by pathogen-encoded gene products, especially those of viruses, has been well documented, few examples of specific interference with the MHC class II pathway have been reported. Potential targets for such interference are the proteases that remove the invariant chain chaperone and generate antigenic peptides. Indeed, recent studies indicate that immature dendritic cells express cystatin C to modulate cysteine protease activity and the expression of class II MHC molecules [1]. Here, we show that Bm-CPI-2, a recently discovered cystatin homolog produced by the filarial nematode parasite Brugia malayi (W. F. Gregory et al., submitted), inhibits multiple cysteine protease activities found in the endosomes/lysosomes of human B lymphocyte lines. CPI-2 blocked the hydrolysis of synthetic substrates favored by two different families of lysosomal cysteine proteases and blocked the in vitro processing of the tetanus toxin antigen by purified lysosome fractions. Moreover, CPI-2 substantially inhibited the presentation of selected T cell epitopes from tetanus toxin by living antigen-presenting cells. Our studies provide the first example of a product from a eukaryotic parasite that can directly interfere with antigen presentation, which, in turn, may suggest how filarial parasites might inactivate the host immune response to a helminth invader.  相似文献   

9.
CD8+ T cells are the main effector cells for the immune control of cytomegaloviruses. To subvert this control, human and mouse cytomegaloviruses each encode a set of immune-evasion proteins, referred to here as immunoevasins, which interfere specifically with the MHC class I pathway of antigen processing and presentation. Although the concerted action of immunoevasins prevents the presentation of certain viral peptides, other viral peptides escape this blockade conditionally or constitutively and thereby provide the molecular basis of immune surveillance by CD8+ T cells. The definition of viral antigenic peptides that are presented despite the presence of immunoevasins adds a further dimension to the prediction of protective epitopes for use in vaccines.  相似文献   

10.
Antigen loading of MHC class I molecules in the endocytic tract   总被引:4,自引:1,他引:3  
Major histocompatibility complex (MHC) class I molecules bind antigenic peptides that are translocated from the cytosol into the endoplasmic reticulum by the transporter associated with antigen processing. MHC class I loading independent of this transporter also exists and involves peptides derived from exogenously acquired antigens. Thus far, a detailed characterization of the intracellular compartments involved in this pathway is lacking. In the present study, we have used the model system in which peptides derived from measles virus protein F are presented to cytotoxic T cells by B-lymphoblastoid cells that lack the peptide transporter. Inhibition of T cell activation by the lysosomotropic drug ammoniumchloride indicated that endocytic compartments were involved in the class I presentation of this antigen. Using immunoelectron microscopy, we demonstrate that class I molecules and virus protein F co-localized in multivesicular endosomes and lysosomes. Surprisingly, these compartments expressed high levels of class II molecules, and further characterization identified them as MHC class II compartments. In addition, we show that class I molecules co-localized with class II molecules on purified exosomes, the internal vesicles of multivesicular endosomes that are secreted upon fusion of these endosomes with the plasma membrane. Finally, dendritic cells, crucial for the induction of primary immune responses, also displayed class I in endosomes and on exosomes.  相似文献   

11.
12.
病毒干扰MHCⅠ类抗原呈递策略的研究进展   总被引:2,自引:0,他引:2  
赵朴  郑玉姝  刘兴友 《生命科学》2008,20(2):300-303
细胞表面MHCⅠ类分子在CTL的产生和作为CTL受体的配体清除病毒感染细胞中发挥着重要作用。因此,许多病毒在其生活周期的不同阶段干扰MHCⅠ类抗原呈递并不足为奇。深入理解病毒利用的干扰策略不仅有助于揭示病毒的致病机理,而且有助于制定新的对策避免病毒逃逸,这些研究最终可能建立有效控制病毒感染的免疫疗法。因此,本文将就病毒干扰MHCⅠ类抗原呈递策略的研究进展做一综述。  相似文献   

13.
In vivo priming of cytotoxic T lymphocytes (CTL) by DNA injection predominantly occurs by antigen transfer from DNA-transfected cells to antigen-presenting cells. A rational strategy for increasing DNA vaccine potency would be to use a delivery system that facilitates antigen uptake by antigen-presenting cells. Exogenous antigen presentation through the major histocompatibility complex (MHC) class I-restricted pathway of some viral antigens is increased after adequate virus-receptor interaction and the fusion of viral and cellular membranes. We used DNA-based immunization with plasmids coding for human immunodeficiency virus type 1 (HIV-1) Gag particles pseudotyped with vesicular stomatitis virus glycoprotein (VSV-G) to generate Gag-specific CTL responses. The presence of the VSV-G-encoding plasmid not only increased the number of mice displaying anti-Gag-specific cytotoxic response but also increased the efficiency of specific lysis. In vitro analysis of processing confirmed that exogenous presentation of Gag epitopes occurred much more efficiently when Gag particles were pseudotyped with the VSV-G envelope. We show that the VSV-G-pseudotyped Gag particles not only entered the MHC class II processing pathway but also entered the MHC class I processing pathway. In contrast, naked Gag particles entered the MHC class II processing pathway only. Thus, the combined use of DNA-based immunization and nonreplicating pseudotyped virus to deliver HIV-1 antigen to the immune system in vivo could be considered in HIV-1 vaccine design.  相似文献   

14.
15.
16.
Cytotoxic T lymphocytes (CTLs) are an essential component of the immune defense against many virus infections. CTLs recognize viral peptides in the context of the major histocompatibility complex (MHC) class I molecules on the surface of infected cells. Many viruses have evolved mechanisms to interfere with MHC class I expression as a means of evading the host immune response. In the present research we have studied the effect of in vitro Feline Herpesvirus 1 (FeHV‐1) infection on MHC class I expression. The results of this study demonstrate that FeHV‐1 down regulates surface expression of MHC class I molecules on infected cells, presumably to evade cytotoxic T‐cell recognition and, perhaps, attenuate induction of immunity. Sensitivity to UV irradiation and insensitivity to a viral DNA synthesis inhibitor, like phosphonacetic acid, revealed that immediate early or early viral gene(s) are responsible. Use of the protein translation inhibitor cycloheximide confirmed that an early gene is primarily responsible. J. Cell. Biochem. 106: 179–185, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

17.
The classical human interferon-alpha (HuIFN-alpha) gene family is estimated to consist of 15 or more nonallelic members which encode proteins sharing greater than 77% amino acid sequence homology. Low-stringency hybridization with a HuIFN-alpha cDNA probe permitted the isolation of two distinct classes of bovine IFN-alpha genes. The first subfamily (class I) is more closely related to the known HuIFN-alpha genes than to the second subfamily (class II) of bovine IFN-alpha genes. Extensive analysis of the human genome has revealed a HuIFN-alpha gene subfamily corresponding to the class II bovine IFN-alpha genes. The class I human and bovine IFN-alpha genes encode mature IFN polypeptides of 165 to 166 amino acids, whereas the class II IFN-alpha genes encode 172 amino acid proteins. Expression in Escherichia coli of members of both gene subfamilies results in polypeptides having potent antiviral activity. In contrast to previous studies which found no evidence of class II IFN-alpha protein or mRNA expression, we demonstrate that the class I and class II IFN-alpha genes are coordinately induced in response to viral infection.  相似文献   

18.
Regulation of human T cell leukemia virus expression   总被引:15,自引:0,他引:15  
P L Green  I S Chen 《FASEB journal》1990,4(2):169-175
Retroviruses of the type C morphology have been implicated in a wide variety of diseases in animals and humans. The human T cell leukemia viruses types I (HTLV-I) and II (HTLV-II), the prototypic human-type C retroviruses, have been identified as the causative agents of some forms of human leukemia and neurological disorders. The genetic structure and regulation of the HTLVs are more complex than their avian and murine leukemia virus counterparts. In addition to the gag, pol, and env genes that encode the characteristic virion proteins of all replication competent retroviruses, the genomes of HTLV encode the non-structural proteins, Tax and Rex, which are required for regulating viral gene expression. To understand what appears to be a complex mechanism of disease induction by HTLV, elucidating the regulation and function of the viral gene products and the interaction of these products with each other, as well as with cellular factors, will be critical. This review focuses primarily on regulation of HTLV gene expression in the infected human T lymphocyte, but also discusses analogous gene regulation by the human immunodeficiency virus (HIV). It concentrates specifically on the role these gene products play in virus replication and, ultimately, pathogenesis.  相似文献   

19.
C3H10T1/2 fibroblasts when transformed with Kirsten murine sarcoma virus lose the ability to be induced to express class II major histocompatibility complex antigens when induced with interferon-gamma (IFN-gamma). Sublines were derived from transformed lines by cell sorting after treatment with IFN-gamma, sorting for low or high expression of H-2Ak. These sublines remained stably noninducible or inducible for class II antigen for several passages after sorting. In all other respects tested, viz, sensitivity to IFN-gamma for the generation of an antiviral state or the induction of class I antigen, content of ras gene products, the sorted sublines were very similar. We conclude that ras oncogene expression in these cells can influence the induction of class II antigen but that because ras expression in the sorted lines is similar the effect of ras expression is indirect and presumably involves interaction with other cellular factors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号