首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recently identified type II isopentenyl diphosphate (IPP):dimethylallyl diphosphate (DMAPP) isomerase (IDI-2) is a flavoenzyme that requires FMN and NAD(P)H for activity. IDI-2 is an essential enzyme for the biosynthesis of isoprenoids in several pathogenic bacteria including Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecalis, and thus is considered as a potential new drug target to battle bacterial infections. One notable feature of the IDI-2 reaction is that there is no net change in redox state between the substrate (IPP) and product (DMAPP), indicating that the FMN cofactor must start and finish each catalytic cycle in the same redox state. Here, we report the characterization and initial mechanistic studies of the S. aureus IDI-2. The steady-state kinetic analyses under aerobic and anaerobic conditions show that FMN must be reduced to be catalytically active and the overall IDI-2 reaction is O2-sensitive. Interestingly, our results demonstrate that NADPH is needed only in catalytic amounts to activate the enzyme for multiple turnovers of IPP to DMAPP. The hydride transfer from NAD(P)H to reduce FMN is determined to be pro-S stereospecific. Photoreduction and oxidation-reduction potential studies reveal that the S. aureus IDI-2 can stabilize significant amounts of the neutral FMN semiquinone. In addition, reconstitution of apo-IDI-2 with 5-deazaFMN resulted in a dead enzyme, whereas reconstitution with 1-deazaFMN led to the full recovery of enzyme activity. Taken together, these studies appear to support a catalytic mechanism in which the reduced flavin coenzyme mediates a single electron transfer to and from the IPP substrate during catalysis.  相似文献   

2.
Type 2 isopentenyl diphosphate:dimethylallyl diphosphate isomerase (IDI-2, EC 5.3.3.2) is a flavoprotein, which requires FMN, NADPH, and Mg2+ for the activity to convert isopentenyl diphosphate to dimethylallyl diphosphate. For investigation of the reaction mechanism of IDI-2, 3,4-epoxy-3-methylbutyl diphosphate (EIPP), a mechanism-based inhibitor of type 1 IDI (IDI-1), was treated with the overexpressed IDI-2 (MjIDI) from methanogenic archaeon Methanocaldococcus jannaschii. EIPP showed the time- and concentration-dependent inhibition (KI; 56.5 mM, k(inact); 0.10 s(-1), k(inact)/KI; 1.76 s(-1)M(-1)) and the UV-vis spectrum of MjIDI after treatment with EIPP was apparently different from that of the untreated MjIDI. These results indicated that EIPP modified FMN through a covalent bond in the active site of MjIDI. The formed EIPP-FMN complex was separated from the reaction mixture and the spectrometric analysis of the complex suggested that the reduced form of FMN bound to EIPP at the N5 position. These results may suggest that the IDI-2 reaction is similar to IDI-1, which proceeds via carbocation-type intermediate.  相似文献   

3.
Rothman SC  Helm TR  Poulter CD 《Biochemistry》2007,46(18):5437-5445
Type II isopentenyl diphosphate (IPP) isomerase catalyzes the interconversion of IPP and dimethylallyl diphosphate (DMAPP). Although the reactions catalyzed by the type II enzyme and the well-studied type I IPP isomerase are identical, the type II protein requires reduced flavin for activity. The chemical mechanism, including the role of flavin, has not been established for type II IPP isomerase. Recombinant type II IPP isomerase from Thermus thermophilus HB27 was purified by Ni2+ affinity chromatography. The aerobically purified enzyme was inactive until the flavin cofactor was reduced by NADPH or dithionite or photochemically. The inactive oxidized flavin-enzyme complex bound IPP in a Mg2+-dependent manner for which KD approximately KmIPP, suggesting that the substrate binds to the inactive oxidized and active reduced forms of the protein with similar affinities. N,N-Dimethyl-2-amino-1-ethyl diphosphate (NIPP), a transition state analogue for the type I isomerase, competitively inhibits the type II enzyme, but with a much lower affinity. pH-dependent spectral changes indicate that the binding of IPP, DMAPP, and a saturated analogue isopentyl diphosphate promotes protonation of anionic reduced flavin. Electron paramagnetic resonance (EPR) and UV-visible spectroscopy show a substrate-dependent accumulation of the neutral flavin semiquinone during both the flavoenzyme reduction and reoxidation processes in the presence of IPP and related analogues. Redox potentials of IPP-bound enzyme indicate that the neutral semiquinone state of the flavin is stabilized thermodynamically relative to free FMN in solution.  相似文献   

4.
Isopentenyl diphosphate isomerase (IPPI) is an enzyme involved in the synthesis of juvenile hormone (JH) in the corpora allata (CA) of insects. IPPI catalyzes the conversion of isopentenyl pyrophosphate (IPP) to dimethylallyl pyrophosphate (DMAPP); afterward IPP and DMAPP condense in a head-to-tail manner to produce geranyl diphosphate (GPP), this head-to-tail condensation can be repeated, by the further reaction of GPP with IPP, yielding the JH precursor farnesyl diphosphate. An IPPI expressed sequence tag (EST) was obtained from an Aedes aegypti corpora-allata + corpora cardiaca library. Its full-length cDNA encodes a 244-aa protein that shows a high degree of similarity with type I IPPIs from other organisms, particularly for those residues that have important roles in catalysis, metal coordination and interaction with the diphosphate moiety of the IPP. Heterologous expression produced a recombinant protein that metabolized IPP into DMAPP; treatment of DMAPP with phosphoric acid produced isoprene, a volatile compound that was measured with an assay based on a solid-phase micro extraction protocol and direct analysis by gas chromatography. A. aegypti IPPI (AaIPPI) required Mg2+ or Mn2+ but not Zn2+ for full activity and it was entirely inhibited by iodoacetamide. Real time PCR experiments showed that AaIPPI is highly expressed in the CA. Changes in AaIPPI mRNA levels in the CA in the pupal and adult female mosquito corresponded well with changes in JH synthesis (Li et al., 2003). This is the first molecular and functional characterization of an isopentenyl diphosphate isomerase involved in the production of juvenile hormone in the CA of an insect.  相似文献   

5.
Farnesyl diphosphate synthase (FPPase) catalyzes chain elongation of the C(5) substrate dimethylallyl diphosphate (DMAPP) to the C(15) product farnesyl diphosphate (FPP) by addition of two molecules of isopentenyl diphosphate (IPP). The synthesis of FPP proceeds in two steps, where the C(10) product of the first addition, geranyl diphosphate (GPP), is the substrate for the second addition. The product selectivity of avian FPPase was altered to favor synthesis of GPP by site-directed mutagenesis of residues that form the binding pocket for the hydrocarbon residue of the allylic substrate. Amino acid substitutions that reduced the size of the binding pocket were identified by molecular modeling. FPPase mutants containing seven promising modifications were constructed. Initial screens using DMAPP and GPP as substrates indicated that two of the substitutions, A116W and N144'W, strongly discriminated against binding of GPP to the allylic site. These observations were confirmed by an analysis of the products from reactions with DMAPP in the presence of excess IPP and by comparing the steady-state kinetic constants for the wild-type enzyme and the A116W and N114W mutants.  相似文献   

6.
A mevalonate-independent pathway for the biosynthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) that has been elucidated during the last decade is essential in plants, many eubacteria and apicomplexan parasites, but is absent in Archaea and animals. The enzymes of the pathway are potential targets for the development of novel antibiotic, antimalarial and herbicidal agents. This review is focused on the late steps of this pathway. The intermediate 2C-methyl-D-erythritol 2,4-cyclodiphosphate is converted into IPP and DMAPP via 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate by the consecutive action of the iron-sulfur proteins IspG and IspH. IPP and DMAPP can be interconverted by IPP isomerase which is essential in microorganisms using the mevalonate pathway, whereas its presence is optional in microorganisms using the non-mevalonate pathway. A hitherto unknown family of IPP isomerases using FMN as coenzyme has been discovered recently in Archaea and certain eubacteria.  相似文献   

7.
To investigate the unknown stereochemical course of the reaction catalyzed by the type-II isomerase, which interconverts isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), a sample of [1,2-(13)C2]-IPP stereospecifically labelled with 2H at C2 was prepared by incubating a D2O solution of (E)-4-hydroxy-3-methyl[1,2-(13)C2]but-2-enyl diphosphate with a recombinant IspH protein of Escherichia coli in the presence of NADH as a reducing agent and flavodoxin as well as flavodoxin reductase as auxiliary proteins. As monitored by 13C-NMR spectroscopy, treatment of the deuterated IPP with either type-I or type-II IPP isomerase resulted in the formation of DMAPP molecules retaining all the 2H label of the starting material. From the known stereochemical course of the type-I isomerase-catalyzed reaction, one has to conclude that the label introduced from D2O in the course of the IspH reaction resides specifically in the H(Si)-C2 position of IPP and that the two isomerases mobilize specifically the same H(Re)-C2 ligand of their common IPP substrate. The outcome of an additional experiment, in which unlabelled IPP was incubated in D2O with the type-II enzyme, demonstrates that the two isomerases also share the same preference in selecting for their reaction the (E)-methyl group of DMAPP.  相似文献   

8.
Isopentenyl diphosphate:dimethylallyl diphosphate (IPP:DMAPP) isomerase is a key enzyme in the biosynthesis of isoprenoids. The mechanism of the isomerization reaction involves protonation of the unactivated carbon-carbon double bond in the substrate. Analysis of the 1.97 A crystal structure of the inactive C67A mutant of E. coli isopentenyl diphosphate:dimethylallyl diphosphate isomerase complexed with the mechanism-based inactivator 3,4-epoxy-3-methyl-1-butyl diphosphate is in agreement with an isomerization mechanism involving Glu 116, Tyr 104, and Cys 67. In particular, the results are consistent with a mechanism where Glu116 is involved in the protonation step and Cys67 in the elimination step.  相似文献   

9.
An alternative mevalonate-independent pathway for isoprenoid biosynthesis has been recently discovered in eubacteria (including Escherichia coli) and plant plastids, although it is not fully elucidated yet. In this work, E. coli cells were engineered to utilize exogenously provided mevalonate and used to demonstrate by a genetic approach that branching of the endogenous pathway results in separate synthesis of the isoprenoid building units isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). In addition, the IPP isomerase encoded by the idi gene was shown to be functional in vivo and to represent the only possibility for interconverting IPP and DMAPP in this bacterium.  相似文献   

10.
Isopentenyl/dimethylallyl diphosphate isomerase (IPI) catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are the universal C(5) units of isoprenoids. In plants, IPP and DMAPP are synthesized via the cytosolic mevalonate (MVA) and plastidic methylerythritol phosphate (MEP) pathways, respectively. However, the role of IPI in each pathway and in plant development is unknown due to a lack of genetic studies using IPI-defective mutants. Here, we show that the atipi1atipi2 double mutant, which is defective in two Arabidopsis IPI isozymes, exhibits dwarfism and male sterility under long-day conditions and decreased pigmentation under continuous light, whereas the atipi1 and atipi2 single mutants are phenotypically normal. We also show that the sterol and ubiquinone levels in the double mutant are <50% of those in wild-type plants, and that the male-sterile phenotype is chemically complemented by squalene, a sterol precursor. In vivo isotope labeling experiments using the atipi1atipi2 double mutant revealed a decrease in the incorporation of MVA (in its lactone form) into sterols, with no decrease in the incorporation of MEP pathway intermediates into tocopherol. These results demonstrate a critical role for IPI in isoprenoid biosynthesis via the MVA pathway, and they imply that IPI is essential for the maintenance of appropriate levels of IPP and DMAPP in different subcellular compartments in plants.  相似文献   

11.
Typanosoma cruzi, the causative agent of Chagas disease, has recently been shown to be sensitive to the action of the bisphosphonates currently used in bone resorption therapy. These compounds target the mevalonate pathway by inhibiting farnesyl diphosphate synthase (farnesyl pyrophosphate synthase, FPPS), the enzyme that condenses the diphosphates of C5 alcohols (isopentenyl and dimethylallyl) to form C10 and C15 diphosphates (geranyl and farnesyl). The structures of the T. cruzi FPPS (TcFPPS) alone and in two complexes with substrates and inhibitors reveal that following binding of the two substrates and three Mg2+ ions, the enzyme undergoes a conformational change consisting of a hinge-like closure of the binding site. In this conformation, it would be possible for the enzyme to bind a bisphosphonate inhibitor that spans the sites usually occupied by dimethylallyl diphosphate (DMAPP) and the homoallyl moiety of isopentenyl diphosphate. This observation may lead to the design of new, more potent anti-trypanosomal bisphosphonates, because existing FPPS inhibitors occupy only the DMAPP site. In addition, the structures provide an important mechanistic insight: after its formation, geranyl diphosphate can swing without leaving the enzyme, from the product site to the substrate site to participate in the synthesis of farnesyl diphosphate.  相似文献   

12.
The prenyl-transfer reaction catalyzed by porcine farnesyl pyrophosphate synthetase has been studied using (E)- and (Z)-3-trifluoromethyl-2-buten-1-yl pyrophosphates as substrates and inhibitors. The rate of condensation between isopentenyl pyrophosphate (IPP) and the allylic fluoro analogues is drastically depressed relative to the normal catalytic rate observed with dimethylallyl pyrophosphate (DMAPP) or geranyl pyrophosphate (GPP). A similar depression is found in the rates of solvolysis for methanesulfonate derivatives of the fluoro analogues in aqueous actone under typical SN1 reaction conditions. Prolonged incubation of [14C] IPP and (E)- or (Z)-CF3-DMAPP with the enzyme, followed by treatment with alkaline phosphatase, gave a product that comigrated with geranylgeraniol on a polystyrene column. Both fluoro analogues showed mixed linear inhibition patterns with DMAPP or GPP as the variable substrate. We interpret these results in terms of an ionization-condensation-elimination mechanism for the prenyl-transfer reaction.  相似文献   

13.
Two types of isopentenyl diphosphate:dimethylallyl diphosphate isomerases (IDI) have been characterized at present. The long known IDI-1 is only dependent on divalent metals for activity, whereas IDI-2 requires a metal, FMN and NADPH. Here, we report the first structure of an IDI-2 from Bacillus subtilis at 1.9A resolution in the ligand-free form and of the FMN-bound form at 2.8A resolution. The enzyme is an octamer that forms a D4 symmetrical open, cage-like structure. The monomers of 45 kDa display a classical TIM barrel fold. FMN is bound only with very moderate affinity and is therefore completely lost during purification. However, the enzyme can be reconstituted in the crystals by soaking with FMN. Three glycine-rich sequence stretches that are characteristic for IDI-2 participate in FMN binding within the interior of the cage. Regions harboring strictly conserved residues that are implicated in substrate binding or catalysis remain largely disordered even in the presence of FMN.  相似文献   

14.
Isopentenyl diphosphate:dimethylallyl diphosphate (IPP:DMAPP) isomerase catalyses a crucial activation step in the isoprenoid biosynthesis pathway. This enzyme is responsible for the isomerization of the carbon-carbon double bond of IPP to create the potent electrophile DMAPP. DMAPP then alkylates other molecules, including IPP, to initiate the extraordinary variety of isoprenoid compounds found in nature. The crystal structures of free and metal-bound Escherichia coli IPP isomerase reveal critical active site features underlying its catalytic mechanism. The enzyme requires one Mn(2+) or Mg(2+) ion to fold in its active conformation, forming a distorted octahedral metal coordination site composed of three histidines and two glutamates and located in the active site. Two critical residues, C67 and E116, face each other within the active site, close to the metal-binding site. The structures are compatible with a mechanism in which the cysteine initiates the reaction by protonating the carbon-carbon double bond, with the antarafacial rearrangement ultimately achieved by one of the glutamates involved in the metal coordination sphere. W161 may stabilize the highly reactive carbocation generated during the reaction through quadrupole- charge interaction.  相似文献   

15.
Leucoplasts of immature calamondin and satsuma fruits were incubated with [1-14C] isopentenyl pyrophosphate under various conditions. Optimal incorporation of the tracer into geranyl pyrophosphate and monoterpene hydrocarbons occurred in the presence of exogenous dimethylallyl pyrophosphate and Mn2+ which was more effective than Mg2+. The dependence of dimethylallyl pyrophosphate showed that about 10 moles were required for 1 mole of isopentenyl pyrophosphate for the best recovery in monoterpene hydrocarbon biosynthesis. A time-course incorporation of isopentenyl pyrophosphate revealed that the C10 hydrocarbon elaboration was dependent on the geranyl pyrophosphate production and at no time neryl pyrophosphate was synthesized by leucoplasts. The amount of labelled farnesyl pyrophosphate was rather low whatever the conditions used in the experiments and sesquiterpene hydrocarbon biosynthesis was never observed.Abbreviations DMAPP dimethylallyl pyrophosphate - FPP farnesyl pyrophosphate - GPP geranyl pyrophosphate - IPP isopentenyl pyrophosphate - LPP linalyl pyrophosphate - NPP neryl pyrophosphate  相似文献   

16.
Feeding tobacco BY-2 cells with [2-13C,4-2H]deoxyxylulose revealed from the 13C labeling that the plastid isoprenoids, synthesized via the MEP pathway, are essentially derived from the labeled precursor. The ca. 15% 2H retention observed in all isoprene units corresponds to the isopentenyl diphosphate (IPP)/dimethylallyl diphosphate (DMAPP) ratio (85:15) directly produced by the hydroxymethylbutenyl diphosphate reductase, the last enzyme of the MEP pathway. 2H retention characterizes the isoprene units derived from the DMAPP branch, whereas 2H loss represents the signature of the IPP branch. Taking into account the enantioselectivity of the reactions catalyzed by the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase, the IPP isomerase and the trans-prenyl transferase, a single biogenetic scheme allows to interpret all labeling patterns observed in bacteria or plants upon incubation with 2H labeled deoxyxylulose.  相似文献   

17.
In the conifer Abies grandis (grand fir), a secreted oleoresin rich in mono-, sesqui-, and diterpenes serves as a constitutive and induced defense against insects and pathogenic fungi. Geranyl diphosphate (GPP) and farnesyl diphosphate (FPP) synthase, two enzymes which form the principal precursors of the oleoresin mono- and sesquiterpenes, were isolated from the stems of 2-year-old grand fir saplings. These enzymes were partially purified by sequential chromatography on DEAE-Sepharose, Mono-Q, and phenyl-Sepharose to remove competing phosphohydrolase and isopentenyl diphosphate (IPP) isomerase activities. GPP and FPP synthase formed GPP and E,E-FPP, respectively, as the sole products of the enzymatic condensation of IPP and dimethylallyl diphosphate (DMAPP). The properties of both enzymes are broadly similar to those of other prenyltransferases. The apparent native molecular masses are 54 +/- 3 kDa for GPP synthase and 110 +/- 6 kDa fo  相似文献   

18.
Zhang C  Liu L  Xu H  Wei Z  Wang Y  Lin Y  Gong W 《Journal of molecular biology》2007,366(5):1437-1446
Type I isopentenyl diphosphate (IPP): dimethylally diphosphate (DMAPP) isomerase is an essential enzyme in human isoprenoid biosynthetic pathway. It catalyzes isomerization of the carbon-carbon double bonds in IPP and DMAPP, which are the basic building blocks for the subsequent biosynthesis. We have determined two crystal structures of human IPP isomerase I (hIPPI) under different crystallization conditions. High similarity between structures of human and Escherichia coli IPP isomerases proves the conserved catalytic mechanism. Unexpectedly, one of the hIPPI structures contains a natural substrate analog ethanol amine pyrophosphate (EAPP). Based on this structure, a water molecule is proposed to be the direct proton donor for IPP and different conformations of IPP and DMAPP bound in the enzyme are also proposed. In addition, structures of human IPPI show a flexible N-terminal alpha-helix covering the active pocket and blocking the entrance, which is absent in E. coli IPPI. Besides, the active site conformation is not the same in the two hIPPI structures. Such difference leads to a hypothesis that substrate binding induces conformational change in the active site. The inhibition mechanism of high Mn(2+) concentrations is also discussed.  相似文献   

19.
Isopentenyl diphosphate isomerase (IPP isomerase) in many organisms and in plastids is central to isoprenoid synthesis and involves the conversion between IPP and dimethylallyl diphosphate (DMAPP). It is shown that Synechocystis PCC6803 is deficient in IPP isomerase activity, consistent with the absence in its genome of an obvious homologue for the enzyme. Incorporation of [1-(14)C]IPP in cell extracts, primarily into C(20), occurs only upon priming with DMAPP in Synechocystis PCC6803 and in Synechococcus PCC7942. Isoprenoid synthesis in these cyanobacteria does not appear to involve interconversion of IPP and DMAPP, raising the possibility that they are not within the plastid evolutionary lineage.  相似文献   

20.
Enzymatic and thermodynamic characteristics of type II isopentenyl diphosphate (IPP):dimethylallyl diphosphate (DMAPP) isomerase (Tk-IDI) from Thermococcus kodakaraensis, which catalyzes the interconversion of IPP and DMAPP, were examined. FMN was tightly bound to Tk-IDI, and the enzyme required NADPH and Mg2+ for the isomerization in both directions. The melting temperature (Tm), the change of enthalpy (deltaH(m)), and the heat capacity change (deltaC(p)) of Tk-IDI were 88.0 degrees C, 444 kJ mol(-1), and 13.2 kJ mol(-1) K(-1), respectively, indicating that Tk-IDI is fairly thermostable. Kinetic parameters dramatically changed when the temperature crossed 80 degrees C even though its native overall structure was stably maintained up to 90 degrees C, suggesting that local conformational change would occur around 80 degrees C. This speculation was supported by the result of the circular dichroism analysis that showed the shift of the alpha-helical content occurred at 80 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号