首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of flaviviruses are important human pathogens, including yellow fever, dengue, West Nile, Japanese encephalitis, and tick-borne encephalitis (TBE) viruses. Infection with or immunization against any of these viruses induces a subset of antibodies that are broadly flavivirus cross-reactive but do not exhibit significant cross-neutralization. Nevertheless, these antibodies can efficiently bind to the major envelope protein (E), which is the main target of neutralizing and protective antibodies because of its receptor-binding and membrane fusion functions. The structural basis for this phenomenon is still unclear. In our studies with TBE virus, we have provided evidence that such cross-reactive antibodies are specific for a cluster of epitopes that are partially occluded in the cage-like assembly of E proteins at the surfaces of infectious virions and involve-but are not restricted to-amino acids of the highly conserved internal fusion peptide loop. Virus disintegration leads to increased accessibility of these epitopes, allowing the cross-reactive antibodies to bind with strongly increased avidity. The cryptic properties of these sites in the context of infectious virions can thus provide an explanation for the observed lack of efficient neutralizing activity of broadly cross-reactive antibodies, despite their specificity for a functionally important structural element in the E protein.  相似文献   

2.
Lai CY  Tsai WY  Lin SR  Kao CL  Hu HP  King CC  Wu HC  Chang GJ  Wang WK 《Journal of virology》2008,82(13):6631-6643
The antibody response to the envelope (E) glycoprotein of dengue virus (DENV) is known to play a critical role in both protection from and enhancement of disease, especially after primary infection. However, the relative amounts of homologous and heterologous anti-E antibodies and their epitopes remain unclear. In this study, we examined the antibody responses to E protein as well as to precursor membrane (PrM), capsid, and nonstructural protein 1 (NS1) of four serotypes of DENV by Western blot analysis of DENV serotype 2-infected patients with different disease severity and immune status during an outbreak in southern Taiwan in 2002. Based on the early-convalescent-phase sera tested, the rates of antibody responses to PrM and NS1 proteins were significantly higher in patients with secondary infection than in those with primary infection. A blocking experiment and neutralization assay showed that more than 90% of anti-E antibodies after primary infection were cross-reactive and nonneutralizing against heterologous serotypes and that only a minor proportion were type specific, which may account for the type-specific neutralization activity. Moreover, the E-binding activity in sera of 10 patients with primary infection was greatly reduced by amino acid replacements of three fusion loop residues, tryptophan at position 101, leucine at position 107, and phenylalanine at position 108, but not by replacements of those outside the fusion loop of domain II, suggesting that the predominantly cross-reactive anti-E antibodies recognized epitopes involving the highly conserved residues at the fusion loop of domain II. These findings have implications for our understanding of the pathogenesis of dengue and for the future design of subunit vaccine against DENV as well.  相似文献   

3.
Chikungunya virus (CHIKV) and clinically-related arboviruses cause large epidemics with serious economic and social impact. As clinical symptoms of CHIKV infections are similar to several flavivirus infections, good detection methods to identify CHIKV infection are desired for improved treatment and clinical management. The strength of anti-E2EP3 antibody responses was explored in a longitudinal study on 38 CHIKV-infected patients. We compared their anti-E2EP3 responses with those of patients infected with non-CHIKV alphaviruses, or flaviviruses. E2EP3 cross-reactive samples from patients infected with non-CHIKV viruses were further analyzed with an in vitro CHIKV neutralization assay. CHIKV-specific anti-E2EP3 antibody responses were detected in 72% to 100% of patients. Serum samples from patients infected with other non-CHIKV alphaviruses were cross-reactive to E2EP3. Interestingly, some of these antibodies demonstrated clearly in vitro CHIKV neutralizing activity. Contrastingly, serum samples from flaviviruses-infected patients showed a low level of cross-reactivity against E2EP3. Using CHIKV E2EP3 as a serology marker not only allows early detection of CHIKV specific antibodies, but would also allow the differentiation between CHIKV infections and flavivirus infections with 93% accuracy, thereby allowing precise acute febrile diagnosis and improving clinical management in regions newly suffering from CHIKV outbreaks including the Americas.  相似文献   

4.
Previous studies have established that an epitope on the lateral ridge of domain III (DIII-lr) of West Nile virus (WNV) envelope (E) protein is recognized by strongly neutralizing type-specific antibodies. In contrast, an epitope against the fusion loop in domain II (DII-fl) is recognized by flavivirus cross-reactive antibodies with less neutralizing potential. Using gain- and loss-of-function E proteins and wild-type and variant WNV reporter virus particles, we evaluated the expression pattern and activity of antibodies against the DIII-lr and DII-fl epitopes in mouse and human serum after WNV infection. In mice, immunoglobulin M (IgM) antibodies to the DIII-lr epitope were detected at low levels at day 6 after infection. However, compared to IgG responses against other epitopes in DI and DII, which were readily detected at day 8, the development of IgG against DIII-lr epitope was delayed and did not appear consistently until day 15. This late time point is notable since almost all death after WNV infection in mice occurs by day 12. Nonetheless, at later time points, DIII-lr antibodies accumulated and comprised a significant fraction of the DIII-specific IgG response. In sera from infected humans, DIII-lr antibodies were detected at low levels and did not correlate with clinical outcome. In contrast, antibodies to the DII-fl were detected in all human serum samples and encompassed a significant percentage of the anti-E protein response. Our experiments suggest that the highly neutralizing DIII-lr IgG antibodies have little significant role in primary infection and that the antibody response of humans may be skewed toward the induction of cross-reactive, less-neutralizing antibodies.  相似文献   

5.
Sera from human immunodeficiency virus type 1 (HIV-1)-infected North American patients recognized a fusion protein expressing a V3 loop from a clade B primary isolate virus (JR-CSF) but not from a clade A primary isolate virus (92UG037.8), while most sera from Cameroonian patients recognized both fusion proteins. Competition studies of consensus V3 peptides demonstrated that the majority of the cross-reactive Cameroonian sera contained cross-reactive antibodies that reacted strongly with both V3 sequences. V3-specific antibodies purified from all six cross-reactive sera examined had potent neutralizing activity for virus pseudotyped with envelope proteins (Env) from SF162, a neutralization-sensitive clade B primary isolate. For four of these samples, neutralization of SF162 pseudotypes was blocked by both the clade A and clade B V3 fusion proteins, indicating that this activity was mediated by cross-reactive antibodies. In contrast, the V3-reactive antibodies from only one of these six sera had significant neutralizing activity against viruses pseudotyped with Envs from typically resistant clade B (JR-FL) or clade A (92UG037.8) primary isolates. However, the V3-reactive antibodies from these cross-reactive Cameroonian sera did neutralize virus pseudotyped with chimeric Envs containing the 92UG037.8 or JR-FL V3 sequence in Env backbones that did not express V1/V2 domain masking of V3 epitopes. These data indicated that Cameroonian sera frequently contain cross-clade reactive V3-directed antibodies and indicated that the typical inability of such antibodies to neutralize typical, resistant primary isolate Env pseudotypes was primarily due to indirect masking effects rather than to the absence of the target epitopes.  相似文献   

6.
Neutralization of flaviviruses in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Previous studies demonstrated that monoclonal antibodies (MAbs) against an epitope on the lateral ridge of domain III (DIII) of the West Nile virus (WNV) E protein strongly protect against infection in animals. Based on X-ray crystallography and sequence analysis, an analogous type-specific neutralizing epitope for individual serotypes of the related flavivirus dengue virus (DENV) was hypothesized. Using yeast surface display of DIII variants, we defined contact residues of a panel of type-specific, subcomplex-specific, and cross-reactive MAbs that recognize DIII of DENV type 2 (DENV-2) and have different neutralizing potentials. Type-specific MAbs with neutralizing activity against DENV-2 localized to a sequence-unique epitope on the lateral ridge of DIII, centered at the FG loop near residues E383 and P384, analogous in position to that observed with WNV-specific strongly neutralizing MAbs. Subcomplex-specific MAbs that bound some but not all DENV serotypes and neutralized DENV-2 infection recognized an adjacent epitope centered on the connecting A strand of DIII at residues K305, K307, and K310. In contrast, several MAbs that had poor neutralizing activity against DENV-2 and cross-reacted with all DENV serotypes and other flaviviruses recognized an epitope with residues in the AB loop of DIII, a conserved region that is predicted to have limited accessibility on the mature virion. Overall, our experiments define adjacent and structurally distinct epitopes on DIII of DENV-2 which elicit type-specific, subcomplex-specific, and cross-reactive antibodies with different neutralizing potentials.  相似文献   

7.
Influenza virus infection and the resulting complications are a significant global public health problem. Improving humoral immunity to influenza is the target of current conventional influenza vaccines, however, these are generally not cross-protective. On the contrary, cell-mediated immunity generated by primary influenza infection provides substantial protection against serologically distinct viruses due to recognition of cross-reactive T cell epitopes, often from internal viral proteins conserved between viral subtypes. Efforts are underway to develop a universal flu vaccine that would stimulate both the humoral and cellular immune responses leading to long-lived memory. Such a universal vaccine should target conserved influenza virus antibody and T cell epitopes that do not vary from strain to strain. In the last decade, immunoproteomics, or the direct identification of HLA class I presented epitopes, has emerged as an alternative to the motif prediction method for the identification of T cell epitopes. In this study, we used this method to uncover several cross-specific MHC class I specific T cell epitopes naturally presented by influenza A-infected cells. These conserved T cell epitopes, when combined with a cross-reactive antibody epitope from the ectodomain of influenza M2, generate cross-strain specific cell mediated and humoral immunity. Overall, we have demonstrated that conserved epitope-specific CTLs could recognize multiple influenza strain infected target cells and, when combined with a universal antibody epitope, could generate virus specific humoral and T cell responses, a step toward a universal vaccine concept. These epitopes also have potential as new tools to characterize T cell immunity in influenza infection, and may serve as part of a universal vaccine candidate complementary to current vaccines.  相似文献   

8.
Live vaccinia virus (VV) vaccination has been highly successful in eradicating smallpox. However, the mechanisms of immunity involved in mediating this protective effect are still poorly understood, and the roles of CD8 T-cell responses in primary and secondary VV infections are not clearly identified. By applying the concept of molecular mimicry to identify potential CD8 T-cell epitopes that stimulate cross-reactive T cells specific to lymphocytic choriomeningitis virus (LCMV) and VV, we identified after screening only 115 peptides two VV-specific immunogenic epitopes that mediated protective immunity against VV. An immunodominant epitope, VV-e7r130, did not generate cross-reactive T-cell responses to LCMV, and a subdominant epitope, VV-a11r198, did generate cross-reactive responses to LCMV. Infection with VV induced strong epitope-specific responses which were stable into long-term memory and peaked at the time virus was cleared, consistent with CD8 T cells assisting in the control of VV. Two different approaches, direct adoptive transfer of VV-e7r-specific CD8 T cells and prior immunization with a VV-e7r-expressing ubiquitinated minigene, demonstrated that memory CD8 T cells alone could play a significant role in protective immunity against VV. These studies suggest that exploiting cross-reactive responses between viruses may be a useful tool to complement existing technology in predicting immunogenic epitopes to large viruses, such as VV, leading to a better understanding of the role CD8 T cells play during these viral infections.  相似文献   

9.
Dengue virus (DENV) is a mosquito-borne flavivirus and a major international public health concern in many tropical and sub-tropical areas worldwide. DENV is divided into four major serotypes, and infection with one serotype leads to immunity against the same, but not the other serotypes. The specific diagnosis of DENV-infections via antibody-detection is problematic due to the high degree of cross-reactivity displayed by antibodies against related flaviviruses, such as West Nile virus (WNV), Yellow Fever virus (YFV) or Tick-borne encephalitis virus (TBEV). Especially in areas where several flaviviruses co-circulate or in the context of vaccination e.g. against YFV or TBEV, this severely complicates diagnosis and surveillance. Most flavivirus cross-reactive antibodies are produced against the highly conserved fusion loop (FL) domain in the viral envelope (E) protein. We generated insect-cell derived recombinant E-proteins of the four DENV-serotypes which contain point mutations in the FL domain. By using specific mixtures of these mutant antigens, cross-reactivity against heterologous flaviviruses was strongly reduced, enabling sensitive and specific diagnosis of the DENV-infected serum samples in IgG and IgM-measurements. These results have indications for the development of serological DENV-tests with improved specificity.  相似文献   

10.
Japanese encephalitis virus (JEV) non-structural protein 1 (NS1) contributes to virus replication and elicits protective immune responses during infection. JEV NS1-specific antibody responses could be a target in the differential diagnosis of different flavivirus infections. However, the epitopes on JEV NS1 are poorly characterized. The present study describes the full mapping of linear B-cell epitopes in JEV NS1. We generated eleven NS1-specific monoclonal antibodies from mice immunized with recombinant NS1. For epitope mapping of monoclonal antibodies, a set of 51 partially-overlapping peptides covering the entire NS1 protein were expressed with a GST-tag and then screened using monoclonal antibodies. Through enzyme-linked immunosorbent assay (ELISA), five linear epitope-containing peptides were identified. By sequentially removing amino acid residues from the carboxy and amino terminal of peptides, the minimal units of the five linear epitopes were identified and confirmed using monoclonal antibodies. Five linear epitopes are located in amino acids residues 5AIDITRK11, 72RDELNVL78, 251KSKHNRREGY260, 269DENGIVLD276, and 341DETTLVRS348. Furthermore, it was found that the epitopes are highly conserved among JEV strains through sequence alignment. Notably, none of the homologous regions on NS1 proteins from other flaviviruses reacted with the MAbs when they were tested for cross-reactivity, and all five epitope peptides were not recognized by sera against West Nile virus or Dengue virus. These novel virus-specific linear B-cell epitopes of JEV NS1 would benefit the development of new vaccines and diagnostic assays.  相似文献   

11.
A model of the tick-borne encephalitis virus envelope protein E is presented that contains information on the structural organization of this flavivirus protein and correlates epitopes and antigenic domains to defined sequence elements. It thus reveals details of the structural and functional characteristics of the corresponding protein domains. The localization of three antigenic domains (composed of 16 distinct epitopes) within the primary structure was performed by (i) amino-terminal sequencing of three immunoreactive fragments of protein E and (ii) sequencing the protein E-coding regions of seven antigenic variants of tick-borne encephalitis virus that had been selected in the presence of neutralizing monoclonal antibodies directed against the E protein. Further information about variable and conserved regions was obtained by a comparative computer analysis of flavivirus E protein amino acid sequences. The search for potential T-cell determinants revealed at least one sequence compatible with an amphipathic alpha-helix which is conserved in all flaviviruses sequenced so far. By combining these data with those on the location of disulfide bridges (T. Nowak and G. Wengler, Virology 156:127-137, 1987) and the structural characteristics of epitopes, such as dependency on conformation or on intact disulfide bridges or both, a model was established that goes beyond the location of epitopes in the primary sequence and reveals features of the folding of the polypeptide chain, including the generation of discontinuous protein domains.  相似文献   

12.
The recent emergence of a novel H7N9 influenza A virus (IAV) causing severe human infections in China raises concerns about a possible pandemic. The lack of pre-existing neutralizing antibodies in the broader population highlights the potential protective role of IAV-specific CD8+ cytotoxic T lymphocyte (CTL) memory specific for epitopes conserved between H7N9 and previously encountered IAVs. In the present study, the heterosubtypic immunity generated by prior H9N2 or H1N1 infections significantly, but variably, reduced morbidity and mortality, pulmonary virus load and time to clearance in mice challenged with the H7N9 virus. In all cases, the recall of established CTL memory was characterized by earlier, greater airway infiltration of effectors targeting the conserved or cross-reactive H7N9 IAV peptides; though, depending on the priming IAV, each case was accompanied by distinct CTL epitope immunodominance hierarchies for the prominent KbPB1703, DbPA224, and DbNP366 epitopes. While the presence of conserved, variable, or cross-reactive epitopes between the priming H9N2 and H1N1 and the challenge H7N9 IAVs clearly influenced any change in the immunodominance hierarchy, the changing patterns were not tied solely to epitope conservation. Furthermore, the total size of the IAV-specific memory CTL pool after priming was a better predictor of favorable outcomes than the extent of epitope conservation or secondary CTL expansion. Modifying the size of the memory CTL pool significantly altered its subsequent protective efficacy on disease severity or virus clearance, confirming the important role of heterologous priming. These findings establish that both the protective efficacy of heterosubtypic immunity and CTL immunodominance hierarchies are reflective of the immunological history of the host, a finding that has implications for understanding human CTL responses and the rational design of CTL-mediated vaccines.  相似文献   

13.
Serotype-cross-reactive dengue virus-specific cytotoxic T lymphocytes (CTL) induced during a primary dengue virus infection are thought to play a role in the immunopathogenesis of dengue hemorrhagic fever (DHF) during a secondary dengue virus infection. Although there is no animal model of DHF, we previously reported that murine dengue virus-specific CTL responses are qualitatively similar to human dengue virus-specific CTL responses. We used BALB/c mice to study the specificity of the CTL response to an immunodominant epitope on the dengue virus NS3 protein. We mapped the minimal H-2Kd-restricted CTL epitope to residues 298 to 306 of the dengue type 2 virus NS3 protein. In short-term T-cell lines and clones, the predominant CD8+ CTL to this epitope in mice immunized with dengue type 2 virus or vaccinia virus expressing the dengue type 4 virus NS3 protein were cross-reactive with dengue type 2 or type 4 virus, while broadly serotype-cross-reactive CTL were a minority population. In dengue type 3 virus-immunized mice, the predominant CTL response to this epitope was broadly serotype cross-reactive. All of the dengue virus-specific CTL clones studied also recognized the homologous NS3 sequences of one or more closely related flaviviruses, such as Kunjin virus. The critical contact residues for the CTL clones with different specificities were mapped with peptides having single amino acid substitutions. These data demonstrate that primary dengue virus infection induces a complex population of flavivirus-cross-reactive NS3-specific CTL clones in mice and suggest that CTL responses are influenced by the viral serotype. These findings suggest an additional mechanism by which the order of sequential flavivirus infections may influence disease manifestations.  相似文献   

14.
Immunisation against coccidiosis has become more reliable and effective with improved administration techniques for new vaccines. On the other hand, an ideal coccidial vaccine should contain both B- and T-cell immunogenic epitopes. Fine specificity of B-cell epitopes recognised by antibodies prepared following primary and secondary infections with Eimeria tenella were studied using "PepScan" techniques. Mapping of B-cell epitopes within an antigenic sequence from E. tenella showed that four distinct types of epitopes were recognised by the host immune system during the primary and secondary infections with the parasite. These observations demonstrated that new epitopes are also involved in induction of antibody responses following the secondary infection.  相似文献   

15.
The present studies were undertaken to identify conserved epitopes of group A streptococcal M proteins that evoke cross-protective mucosal immune responses. Two synthetic peptides copying conserved regions of type 5 M protein, designated SM5(235-264)C and SM5(265-291)C, were covalently linked to carrier molecules and their immunogenicity was tested in laboratory animals. Rabbit antisera against both peptides cross-reacted with multiple serotypes of group A streptococci, indicating that the peptides contained broadly cross-reactive, surface exposed M protein epitopes. Serum antipeptide antibodies adsorbed to the surface of heterologous type 24 streptococci passively protected mice against intranasal challenge infections. Mice that were actively immunized intranasally with each synthetic peptide covalently linked to the B subunit of cholera toxin were protected against colonization and death after intranasal challenge infections with type 24 streptococci in the absence of serum opsonic antibodies. These data confirm and extend previous observations that conserved M protein epitopes evoke cross-protective local immunity and may serve as the basis for broadly cross-protective M protein vaccines.  相似文献   

16.
Sera from 17 patients with primary and secondary liver tumors who had been administered oncolytic adenovirus (Ad) mutant Addl1520 were analyzed for anti-Ad neutralization titers and antibodies to the Ad major capsid proteins hexon, penton base (Pb), and fiber. The antibodies recognized mainly conformational epitopes in hexon and both linear and conformational epitopes in Pb and fiber. Pb-specific antibodies were isolated from serum samples that had been obtained prior to and during the course of the treatment of four of these patients. We found that the Pb antibodies had a significant contribution toward anti-Ad neutralization, and this mainly occurred at the step of virus internalization. The Pb antigenic epitopes were determined by phage biopanning and were mapped to 10 discrete regions, which made up three major immunodominant domains within residues 51 to 120, 193 to 230, and 311 to 408, respectively. One of these domains (residues 311 to 408) overlapped the highly conserved, integrin-binding RGD (Arg-Gly-Asp) motif. The contribution of antibodies directed to RGD and other epitopes in Ad neutralization activity was determined indirectly by using a phage-mediated depletion assay. Our results suggested that circulating RGD antibodies were not prevalent and were poorly neutralizing and that other peptide motifs within residues 51 to 60, 216 to 226, and 311 to 408 in Pb sequence represented major target sites for neutralizing antibodies.  相似文献   

17.
Influenza A viruses, including H1N1 and H5N1 subtypes, pose a serious threat to public health. Neuraminidase (NA)-related immunity contributes to protection against influenza virus infection. Antibodies to the N1 subtype provide protection against homologous and heterologous H1N1 as well as H5N1 virus challenge. Since neither the strain-specific nor conserved epitopes of N1 have been identified, we generated a panel of mouse monoclonal antibodies (MAbs) that exhibit different reactivity spectra with H1N1 and H5N1 viruses and used these MAbs to map N1 antigenic domains. We identified 12 amino acids essential for MAb binding to the NA of a recent seasonal H1N1 virus, A/Brisbane/59/2007. Of these, residues 248, 249, 250, 341, and 343 are recognized by strain-specific group A MAbs, while residues 273, 338, and 339 are within conserved epitope(s), which allows cross-reactive group B MAbs to bind the NAs of seasonal H1N1 and the 1918 and 2009 pandemic (09pdm) H1N1 as well as H5N1 viruses. A single dose of group B MAbs administered prophylactically fully protected mice against lethal challenge with seasonal and 09pdm H1N1 viruses and resulted in significant protection against the highly pathogenic wild-type H5N1 virus. Another three N1 residues (at positions 396, 397, and 456) are essential for binding of cross-reactive group E MAbs, which differ from group B MAbs in that they do not bind 09pdm H1N1 viruses. The identification of conserved N1 epitopes reveals the molecular basis for NA-mediated immunity between H1N1 and H5N1 viruses and demonstrates the potential for developing broadly protective NA-specific antibody treatments for influenza.  相似文献   

18.
Epitope-specific antibody response to murine hepatitis virus-4 (strain JHM)   总被引:3,自引:0,他引:3  
Monoclonal hybridoma antibodies to the structural proteins of murine hepatitis virus-4, strain JHM (MHV-4) were used in a competition binding enzyme immunoassay to analyze at the epitope level the antibody response of mice after infection with MHV-4. Colonized mice often had pre-existing MHV antibodies directed against epitopes on the E2 glycoprotein, the E1 glycoprotein, and the nucleocapsid protein. These mice generated a secondary antibody response after virus inoculation, reaching peak levels 7 days after infection. In contrast, Nude/+ mice raised in a pathogen-free colony had no detectable circulating MHV antibodies and generated a primary antibody response which gradually increased to peak levels 14 to 28 days after infection. Kinetics of antibody responses against specific epitopes usually correlated well with measured total virus-specific antibody responses, but variation was observed. Mice injected with three antigenically distinct strains of MHV made antibody responses to conserved epitopes but not to an antigenic determinant absent in these strains. Measurement of epitope-specific responses in a polyclonal population of viral specific antibodies is feasible and a valuable adjunct in understanding viral immunity.  相似文献   

19.
The envelope (E) protein of dengue virus (DENV) is the major target of neutralizing antibodies (Abs) and vaccine development. Previous studies of human dengue-immune sera reported that a significant proportion of anti-E Abs, known as group-reactive (GR) Abs, were cross-reactive to all four DENV serotypes and to one or more other flaviviruses. Based on studies of mouse anti-E monoclonal antibodies (MAbs), GR MAbs were nonneutralizing or weakly neutralizing compared with type-specific MAbs; a GR response was thus not regarded as important for vaccine strategy. We investigated the epitopes, binding avidities, and neutralization potencies of 32 human GR anti-E MAbs. In addition to fusion loop (FL) residues in E protein domain II, human GR MAbs recognized an epitope involving both FL and bc loop residues in domain II. The neutralization potencies and binding avidities of GR MAbs derived from secondary DENV infection were stronger than those derived from primary infection. GR MAbs derived from primary DENV infection primarily blocked attachment, whereas those derived from secondary infection blocked DENV postattachment. Analysis of the repertoire of anti-E MAbs derived from patients with primary DENV infection revealed that the majority were GR, low-avidity, and weakly neutralizing MAbs, whereas those from secondary infection were primarily GR, high-avidity, and potently neutralizing MAbs. Our findings suggest that the weakly neutralizing GR anti-E Abs generated from primary DENV infection become potently neutralizing MAbs against the four serotypes after secondary infection. The observation that the dengue immune status of the host affects the quality of the cross-reactive Abs generated has implications for new strategies for DENV vaccination.  相似文献   

20.
T-cell responses to dengue viruses may be important in both protective immunity and pathogenesis. This study of 48 Vietnamese adults with secondary dengue virus infections defined the breadth and magnitude of peripheral T-cell responses to 260 overlapping peptide antigens derived from a dengue virus serotype 2 (DV2) isolate. Forty-seven different peptides evoked significant gamma interferon enzyme-linked immunospot (ELISPOT) assay responses in 39 patients; of these, 34 peptides contained potentially novel T-cell epitopes. NS3 and particularly NS3200-324 were important T-cell targets. The breadth and magnitude of ELISPOT responses to DV2 peptides were independent of the infecting dengue virus serotype, suggesting that cross-reactive T cells dominate the acute response during secondary infection. Acute ELISPOT responses were weakly correlated with the extent of hemoconcentration in individual patients but not with the nadir of thrombocytopenia or overall clinical disease grade. NS3556-564 and Env414-422 were identified as novel HLA-A*24 and B*07-restricted CD8+ T-cell epitopes, respectively. Acute T-cell responses to natural variants of Env414-422 and NS3556-564 were largely cross-reactive and peaked during disease convalescence. The results highlight the importance of NS3 and cross-reactive T cells during acute secondary infection but suggest that the overall breadth and magnitude of the T-cell response is not significantly related to clinical disease grade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号