首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为探讨毛竹(Phyllostachys edulis)入侵对周围森林群落的影响,作者于2005-2011年在天目山自然保护区进行了7年长期定位观测实验,研究了毛竹入侵地森林群落的植物物种多样性变化.结果表明:毛竹入侵对周围森林群落植物物种多样性产生了不利影响:毛竹林乔木层和灌木层植物的Simpson指数小于针阔混交林和毛竹-针阔混交林,而草本层的Simpson指数则大于针阔混交林和毛竹-针阔混交林.植物物种丰富度、Simpson指数和Pielou均匀度指数随时间发生了较大变化:毛竹入侵的森林群落其乔木层和灌木层的物种丰富度、Simpson指数和Pielou均匀度指数显著降低(P<0.05),草本层的物种丰富度显著提高(P<0.05),Simpson指数和Pielou均匀度指数未表现出明显的变化.毛竹-针阔混交林去除毛竹后,乔木层和灌木层物种丰富度和Simpson指数增加,草本层物种丰富度、Simpson指数和Pielou均匀度指数明显下降.可见,毛竹入侵使森林群落植物多样性发生实质性的变化,对自然保护区植物群落造成了重大影响.由此可见,要使保护区物种多样性得到保护,除进行科学的管理外,还需要控制毛竹蔓延.  相似文献   

2.
3.
4.
Introduced Plant Viruses and the Invasion of a Native Grass Flora   总被引:3,自引:0,他引:3  
Weed and native grasses from the South Island of New Zealand were surveyed for virus infection. Cocksfoot mottle virus (CfMV) and Ryegrass mosaic virus (RgMV) were restricted to a few introduced species; however, Barley yellow dwarf viruses (BYDVs) have invaded native grasses in New Zealand. Virus incidence was significantly lower in the native species (2%) than in the introduced species (12%). Four different serotypes (RMV, RPV, PAV, MAV) were detected in the introduced grass flora but only two (RMV, PAV) were detected in native species. In experimental transmission tests the aphid vector Rhopalosiphum padi's survival was variable on the 20 native species tested but this was not due to the presence or absence of endophytic fungi as none were detected in the New Zealand species. Aphid numbers increased and plants were killed when R. padi fed on Agrostis muelleriana and Festuca multinodis. R. padi transmitted a PAV isolate to these and six other native species. BYDVs infected 4/5 of the subfamilies tested. Virus incidence in native Arundinoideae and Pooideae was significantly lower than in introduced Pooideae and Panicoideae. One species of Bambusoideae collected from the field was not infected but was found susceptible in glasshouse tests. Agrostis capillaris, Dactylis glomerata and Lolium perenne were identified as the most likely reservoirs of infection for the native flora. Anthoxanthum odoratum was not infected but if the SGV serotype and its vector Schizaphis graminum were ever introduced, A. odoratum could form an effective reservoir from near sea level into alpine areas. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Whilst the most obvious mechanism for a biological invasion is the occupation of a new territory as a result of direct ingress by individuals of the invading population, a more subtle “invasion” may occur without significant motion of invading individuals if the population dynamics in a predator prey scenario has an “excitable” character. Here, “excitable” means that a local equilibrium state, either of coexistence of predator and prey, or of prey only, may, when disturbed by a small perturbation, switch to a new, essentially invaded state. In an invasion of this type little spatial movement of individuals occurs, but a wave of rapid change of population level nevertheless travels through the invaded territory. In this article we summarise and review recent modelling research which shows that the macroscopic features of these invasion waves depend strongly on the detailed spatial dynamics of the predator–prey relationship; the models assume simple (linear) diffusion and pursuit-evasion, represented by (non-linear) cross-diffusion, as examples. In the context of plankton population dynamics, such waves may be produced by sudden injections of nutrient and consequent rapid increase in plankton populations, brought about, for example, by the upwelling caused by a passing atmospheric low pressure system.  相似文献   

6.
Biological invasions have become one of the main drivers of habitat degradation and a leading cause of biodiversity loss in island ecosystems worldwide. The spread of invasive species poses a particular environmental threat on the islands of the Mediterranean Basin, which are hot spots of biodiversity and contain rare habitats and endemic species, especially on small islands, which are highly vulnerable to biodiversity loss. Following a recent survey, in this paper we aim to provide an overview of the present-day non-native vascular flora of small Mediterranean islands based on a sample of 37 islands located in the middle of the Mediterranean Sea, off the coast of Italy. By comparing the current data with those gathered during a previous survey conducted in the same study area, we also aim to highlight the main changes that have occurred in non-native plant species diversity, establishment and distribution in recent years and to present a first general overview of the most prominent plant taxa in the island’s introduced flora, focusing on those most responsible for these changes and those that pose the greatest environmental threats. We recorded 203 non-native plant species, 147 of which have established on at least one of the islands investigated. Overall, we detected a sharp increase in the number of species, in their levels of establishment and in the extent of their distribution within the study area in recent years. This may be explained by the intensification of research on plant invasions, as well as to new introduction, escape, establishment and invasion events on the islands in recent decades. The most remarkable plants detected include acacias and succulents, two groups that appear to be emerging very rapidly and to be posing new threats to the conservation of the islands’ natural environment, especially the genus Carpobrotus, whose spread into natural habitats containing rare and endemic taxa is seriously threatening biodiversity on both a local and global scale. On the whole, our results show that the plant invasion phenomenon in the study area has in recent years intensified considerably. As this process seems likely to continue, we should expect more establishment events in the future and the further spread of species that are already present. This is of particular conservation concern on the islands investigated in this survey, which are rich in endemisms, but have been facing deep socio-economic and environmental transformations in these last decades as a consequence of the abandonment of traditional management practices and the development of tourism. Our study thus confirms that plant invasions on Mediterranean islands are a serious environmental problem that threatens biodiversity conservation not only in the Mediterranean biogeographic region, but also on the global scale, and highlights the need to further increase efforts aimed at preventing, controlling or mitigating the effects of plant invasions in island ecosystems.  相似文献   

7.
8.
9.
Invasive alien grasses can substantially alter fuel loads and fire regimes which could have significant consequences for fire-mediated nutrient losses. The effects of the alien grass Andropogon gayanus Kunth. (Gamba grass) on fire-mediated nutrient losses was evaluated in Australia’s tropical savannas. Losses of macronutrients during fire were determined by comparing the nutrient pools contained in the fine fuel before fire and in the ash after fire. Pre-fire grass nutrient pools were significantly higher in A. gayanus plots than in native grass plots for all nutrients measured (N, P, K, S, Ca, and Mg). Nutrient losses were substantially higher in A. gayanus plots, with 113% higher losses for N, 80% for P, 56% for K, 63 for S, 355% for Ca, and 345% for Mg. However, only losses of N and Mg varied significantly between grass types. A simplified savanna ecosystem nutrient budget estimated that A. gayanus fires led to the net N loss of 20 kg ha−1 y−1. This is a conservative estimate because total fuel loads were relatively low (7.85 t ha−1) for A. gayanus invaded plots leading to a relatively moderate intensity fire (6,408 kW m−1). Higher A. gayanus fuel loads and fire intensities could potentially lead to losses of up to 61.5 kg N ha−1 from the grass fuel. Over the long term, this is likely to lead to depletion of soil nutrients, particularly N, in the already low-fertility tropical savanna soils.  相似文献   

10.
龟类外来种的生物入侵隐患及其防治措施   总被引:4,自引:0,他引:4  
徐婧  周婷  叶存奇  黄成 《四川动物》2006,25(2):420-422
本文在国家林业局“中国龟鳖市场调查”项目的基础上,查阅了相关文献及报道,考察了国内主要的大型龟鳖养殖场及10多个省份的观赏龟类和水产品龟类市场,针对龟类外来种的养殖现状和发展趋势及对生态系统潜在的危害进行了分析,探讨了龟类外来种成为入侵种的成因,并对龟类生物入侵的防治进行了讨论,旨在引起龟鳖行业对生物入侵的重视及防范.  相似文献   

11.
    
The invasion of ecosystems by exotic species is currently viewed as one of the most important sources of biodiversity loss. The largest part of this loss occurs on islands, where indigenous species have often evolved in the absence of strong competition, herbivory, parasitism or predation. As a result, introduced species thrive in those optimal insular ecosystems affecting their plant food, competitors or animal prey. As islands are characterised by a high rate of endemism, the impacted populations often correspond to local subspecies or even unique species. One of the most important taxa concerning biological invasions on islands is mammals. A small number of mammal species is responsible for most of the damage to invaded insular ecosystems: rats, cats, goats, rabbits, pigs and a few others. The effect of alien invasive species may be simple or very complex, especially since a large array of invasive species, mammals and others, can be present simultaneously and interact among themselves as well as with the indigenous species. In most cases, introduced species generally have a strong impact and they often are responsible for the impoverishment of the local flora and fauna. The best response to these effects is almost always to control the alien population, either by regularly reducing their numbers, or better still, by eradicating the population as a whole from the island. Several types of methods are currently used: physical (trapping, shooting), chemical (poisoning) and biological (e.g. directed use of diseases). Each has its own set of advantages and disadvantages, depending on the mammal species targeted. The best strategy is almost always to combine several methods. Whatever the strategy used, its long-term success is critically dependent on solid support from several different areas, including financial support, staff commitment, and public support, to name only a few. In many cases, the elimination of the alien invasive species is followed by a rapid and often spectacular recovery of the impacted local populations. However, in other cases, the removal of the alien is not sufficient for the damaged ecosystem to revert to its former state, and complementary actions, such as species re-introduction, are required. A third situation may be widespread: the sudden removal of the alien species may generate a further disequilibrium, resulting in further or greater damage to the ecosystem. Given the numerous and complex population interactions among island species, it is difficult to predict the outcome of the removal of key species, such as a top predator. This justifies careful pre-control study and preparation prior to initiating the eradication of an alien species, in order to avoid an ecological catastrophe. In addition, long-term monitoring ofthe post-eradication ecosystem is crucial to assess success and prevent reinvasion.  相似文献   

12.
The magnitude of impacts some alien species cause to native environments makes them targets for regulation and management. However, which species to target is not always clear, and comparisons of a wide variety of impacts are necessary. Impact scoring systems can aid management prioritization of alien species. For such tools to be objective, they need to be robust to assessor bias. Here, we assess the newly proposed Environmental Impact Classification for Alien Taxa (EICAT) used for amphibians and test how outcomes differ between assessors. Two independent assessments were made by Kraus (Annual Review of Ecology Evolution and Systematics, 46, 2015, 75‐97) and Kumschick et al. (Neobiota, 33, 2017, 53‐66), including independent literature searches for impact records. Most of the differences between these two classifications can be attributed to different literature search strategies used with only one‐third of the combined number of references shared between both studies. For the commonly assessed species, the classification of maximum impacts for most species is similar between assessors, but there are differences in the more detailed assessments. We clarify one specific issue resulting from different interpretations of EICAT, namely the practical interpretation and assigning of disease impacts in the absence of direct evidence of transmission from alien to native species. The differences between assessments outlined here cannot be attributed to features of the scheme. Reporting bias should be avoided by assessing all alien species rather than only the seemingly high‐impacting ones, which also improves the utility of the data for management and prioritization for future research. Furthermore, assessments of the same taxon by various assessors and a structured review process for assessments, as proposed by Hawkins et al. (Diversity and Distributions, 21, 2015, 1360), can ensure that biases can be avoided and all important literature is included.  相似文献   

13.
<正>2013年度,以下专家为《生物多样性》审阅稿件,在此向大家致以深切的谢意!正是有了各位专家认真、细致、及时地审阅稿件,才保障了刊物的学术质量,缩短了稿件的处理周期,从而帮助刊物赢得更多读者和作者的信赖。  相似文献   

14.
新西兰鸟类入侵成功的有关因素   总被引:3,自引:0,他引:3  
Sean Nee 《生物多样性》2002,10(1):106-108
了解外来入侵物种(alien invasive species,AIS)的生物学涉及纯生物学及应用生物学的问题,但是靠预先设计的实验来加深人们的了解显然是不可能的,然而我们可以研究现有的入侵,这也是一个很好的途径,本文利用新西兰历史上的一些记录,探讨了物种在新环境中成功定居的因素,令人惊奇的是,物种间的生物学差异对成功的定居几乎没有什么作用,相反,真正起作用的是一个物种被引入新环境的频率及数量。  相似文献   

15.
Of the large number of exotic plant species that become naturalized in new geographic regions, only a subset make the transition to become invasive. Identifying the factors that underpin the transition from naturalization to invasion is important for our understanding of biological invasions. To determine introduction‐history correlates of invasiveness among naturalized plant species of Australia, we compared geographic origin, reason for introduction, minimum residence time and growth form between naturalized non‐invasive species and naturalized invasive plant species. We found that more invasive species than expected originated from South America and North America, while fewer invasive species than expected originated from Europe and Australasia. There was no significant difference between invasive and non‐invasive species with respect to reason for introduction to Australia. However, invasive species were significantly more likely to have been resident in Australia for a longer period of time than non‐invasive species. Residence times of invasive species were consistently and significantly higher than residence times of non‐invasive species even when each continent of origin was considered separately. Furthermore, residence times for both invasive and non‐invasive species varied significantly as a function of continent of origin, with species from South America having been introduced to Australia more recently on average than species from Europe, Australasia and North America. We also found that fewer invasive species than expected were herbs and more invasive species than expected were primarily climbers. Considered together, our results indicate a high propensity for invasiveness in Australia among exotic plant species from South America, given that they appear in general capable of more rapid shifts to invasiveness than aliens from other regions. Furthermore, our findings support an emerging global generality that introduction‐history traits must be statistically controlled for in comparative studies exploring life‐history and ecological correlates of invasion success.  相似文献   

16.
    
Abstract. The common waxbill Estrilda astrild was first introduced to Portugal from Africa in 1964, and has spread across much of the country and into Spain. We modelled the expansion of the common waxbill on a 20 × 20 km UTM grid in 4‐year periods from 1964 to 1999. The time variation of the square root of the occupied area shows that this expansion process is stabilizing in Portugal, and reasons for this are discussed. Several methods used to model biological expansions are not appropriate for the present case, because little quantitative data are available on the species ecology and because this expansion has been spatially heterogeneous. Instead, colonization on a grid was modelled as a function of several biophysical and spatio‐temporal variables through the fitting of a multivariate autologistic equation. This approach allows examination of the underlying factors affecting the colonization process. In the case of the common waxbill it was associated positively with its occurrence in adjacent cells, and affected negatively by altitude and higher levels of solar radiation.  相似文献   

17.
Twenty-five introduced fish species are established in Spanish fresh waters. Most of the introductions took place after 1900, with a significant exponential increase during the second half of the 20th century (15 species introduced from 1949). Major stocking efforts in Spanish waters have been suspended, but recently some species have been released by anglers or are suspected to be escapes from fish farms. Stream regulation is considered to be one of the main negative factors affecting river ecosystems in Spain, but many of the aliens adapt well to these altered habitats. Competition between native and exotic fishes is certain to occur to some degree, but there is little quantitative information. Fish conservation and fishery management must not be based on the 'introduce anything' sentiment that has developed over more than a century. Information, education and public awareness are critical components of any effort to prevent the spread of introduced fish species.  相似文献   

18.
Plant-soil Interactions in Temperate Grasslands   总被引:18,自引:0,他引:18  
We present a conceptual model in which plant-soil interactions in grasslands are characterized by the extent to which water is limiting. Plant-soil interactions in dry grasslands, those dominated by water limitation (belowground-dominance), are fundamentally different from plant-soil interactions in subhumid grasslands, where resource limitations vary in time and space among water, nitrogen, and light (indeterminate dominance). In the belowground-dominance grasslands, the strong limitation of soil water leads to complete (though uneven) occupation of the soil by roots, but insufficient resources to support continuous aboveground plant cover. Discontinuous aboveground plant cover leads to strong biological and physical forces that result in the accumulation of soil materials beneath individual plants in resource islands. The degree of accumulation in these resource islands is strongly influenced by plant functional type (lifespan, growth form, root:shoot ratio, photosynthetic pathway), with the largest resource islands accumulating under perennial bunchgrasses. Resource islands develop over decadal time scales, but may be reduced to the level of bare ground following death of an individual plant in as little as 3 years. These resource islands may have a great deal of significance as an index of recovery from disturbance, an indicator of ecosystem stability or harbinger of desertification, or may be significant because of possible feedbacks to plant establishment. In the grasslands in which the dominant resource limiting plant community dynamics is indeterminate, plant cover is relatively continuous, and thus the major force in plant-soil interactions is related to the feedbacks among plant biomass production, litter quality and nutrient availability. With increasing precipitation, the over-riding importance of water as a limiting factor diminishes, and four other factors become important in determining plant community and ecosystem dynamics: soil nitrogen, herbivory, fire, and light. Thus, several different strategies for competing for resources are present in this portion of the gradient. These strategies are represented by different plant traits, for example root:shoot allocation, height and photosynthetic pathway type (C3 vs. C4) and nitrogen fixation, each of which has a different influence on litter quality and thus nutrient availability. Recent work has indicated that there are strong feedbacks between plant community structure, diversity, and soil attributes including nitrogen availability and carbon storage. Across both types of grasslands, there is strong evidence that human forces that alter plant community structure, such as invasions by nonnative annual plants or changes in grazing or fire regime, alters the pattern, quantity, and quality of soil organic matter in grassland ecosystems. The reverse influence of soils on plant communities is also strong; in turn, alterations of soil nutrient supply in grasslands can have major influences on plant species composition, plant diversity, and primary productivity.  相似文献   

19.
随着经济全球化快速发展,外来物种入侵危害日益严重。“十三五”时期,我国针对当前面临的重大外来物种入侵威胁,按照基础前沿、共性关键技术与重大产品研发、典型应用示范研究3个层面,部署了一系列科技项目,取得了一批重大科研成果:阐明了入侵物种的入侵机理和进化机制,以及入侵植物与脆弱生态系统互作的调控机制;建立了潜在农业入侵生物信息分析平台,新发外来入侵物种的风险预测与评估模型,重大外来入侵物种的快速检测识别与监测预警技术,以及综合防控技术体系;围绕豚草、空心莲子草、苹果蠹蛾、番茄潜叶蛾、甜菜孢囊线虫等危害特点,开展全程防控技术应用示范。“十三五”期间,基本实现了潜在入侵物种数据量持续丰富完善,新发/突发入侵物种应急防控技术产品有效储备能力增强,重大入侵物种综合防控技术体系逐步健全的良好格局。面向“十四五”,建议继续支持外来物种入侵防控研究,推动“关口前移、疆域监控、灭除阻截、联控减灾”等核心技术的研发,实现有效防控生物入侵的重大目标。  相似文献   

20.
植物功能性状与外来植物入侵   总被引:4,自引:1,他引:4  
揭示影响外来植物入侵性的功能性状及其生态机制是入侵植物生态学的核心任务之一。本文综述了植物功能性状与外来植物入侵性的研究进展, 通过分析植物功能性状对外来植物入侵的贡献以及外来植物的不同入侵阶段对其功能性状的需求, 探讨植物功能性状与外来植物入侵的相关性及其入侵机理。迄今研究较多的影响外来植物入侵性的功能性状主要包括形态性状、生长性状、生理性状、繁殖性状、种子性状、克隆性状、表型可塑性和遗传变异等。这些功能性状对外来植物入侵的贡献随着入侵阶段的不同而变化。在传播到达阶段, 种子性状对入侵具有重要影响; 在定居建群阶段, 与植物抗逆性和适应性相关的生理性状和繁殖性状发挥主要作用; 在扩散入侵阶段, 克隆性状和影响植物竞争能力的生理性状对植物成功入侵具有重要贡献。由于植物入侵性是其功能性状和环境因素互作的结果, 且功能性状的作用随环境因素和入侵阶段不同而异, 因此, 结合外来植物入侵阶段, 并考虑功能性状与环境因子的互作, 是入侵生物学中植物功能性状研究的发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号