首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Autophagy as a natural part of cellular homeostasis usually takes place unnoticed by neighboring cells. However, its co-occurrence with cell death may contribute to the clearance of these dying cells by recruited phagocytes. Autophagy associated with programmed cell death has recently been reported to be essential for presentation of phoshatidylserine (PS) on the cell surface (Qu et al. 2007) that has a key role in the clearance of apoptotic cells. Recently, we have demonstrated that upon triggering cell death by autophagy in MCF-7 cells, the corpses were efficiently phagocytosed by both human macrophages and non-dying MCF-7 cells. Death as well as engulfment could be prevented by inhibiting autophagy. Based on our data, two molecular mechanisms have been proposed for the uptake of cells which die through autophagy: a PS-dependent pathway which was exclusively used by the living MCF-7 cells acting as non-professional phagocytes, and a PS-independent uptake mechanism that was active in macrophages acting as professional phagocytes. Several lines of evidence suggest that macrophages utilize calreticulin-mediated recognition, tethering, tickling and engulfment processes. Phagocytic uptake of cells dying through autophagy by macrophages leads to a pro-inflammatory response characterized by the induction and secretion of IL-6, TNFalpha, IL-8 and IL-10.  相似文献   

2.
MCF-7 cells undergo autophagic death upon tamoxifen treatment. Plated on non-adhesive substratum these cells died by anoikis while inducing autophagy as revealed by monodansylcadaverine staining, elevated light-chain-3 expression and electron microscopy. Both de novo and anoikis-derived autophagic dying cells were engulfed by human macrophages and MCF-7 cells. Inhibition of autophagy by 3-methyladenine abolished engulfment of cells dying through de novo autophagy, but not those dying through anoikis. Blocking exposure of phosphatidylserine (PS) on both dying cell types inhibited phagocytosis by MCF-7 but not by macrophages. Gene expression profiling showed that though both types of phagocytes expressed full repertoire of the PS recognition and signaling pathway, macrophages could evolve during engulfment of de novo autophagic cells the potential of calreticulin-mediated processes as well. Our data suggest that cells dying through autophagy and those committing anoikis with autophagy may engage in overlapping but distinct sets of clearance mechanisms in professional and non-professional phagocytes.  相似文献   

3.
《Autophagy》2013,9(5):508-510
Autophagy as a natural part of cellular homeostasis usually takes place unnoticed by neighboring cells. However, its co-occurrence with cell death may contribute to the clearance of these dying cells by recruited phagocytes. Autophagy associated with programmed cell death has recently been reported to be essential for presentation of phoshatidylserine (PS) on the cell surface (Qu et al. 2007) that has a key role in the clearance of apoptotic cells. Recently, we have demonstrated that upon triggering cell death by autophagy in MCF-7 cells, the corpses were efficiently phagocytosed by both human macrophages and non-dying MCF-7 cells. Death as well as engulfment could be prevented by inhibiting autophagy. Based on our data, two molecular mechanisms have been proposed for the uptake of cells which die through autophagy: a PS-dependent pathway which was exclusively used by the living MCF-7 cells acting as non-professional phagocytes, and a PS-independent uptake mechanism that was active in macrophages acting as professional phagocytes. Several lines of evidence suggest that macrophages utilize calreticulin-mediated recognition, tethering, tickling and engulfment processes. Phagocytic uptake of cells dying through autophagy by macrophages leads to a pro-inflammatory response characterized by the induction and secretion of IL-6, TNFα, IL-8 and IL-10.

Addendum to:Clearance of Dying Autophagic Cells of Different Origin by Professional and Non-Professional Phagocytes

G. Petrovski, G. Zahuczky, K. Katona, G. Vereb, W. Martinet, Z. Nemes, W. Bursch and L. Fésüs

Cell Death Differ 2007;14:1117-28  相似文献   

4.
Guzik K  Potempa J 《Biochimie》2008,90(2):405-415
Physiologically the only acceptable fate for almost all damaged or unwanted cells is their apoptotic death, followed by engulfment of the corpses by healthy neighbors or professional phagocytes. Efficient clearance of cells that have succumbed to apoptosis is crucial for normal tissue homeostasis, and for the modulation of immune responses. The disposal of apoptotic cells is finely regulated by a highly redundant system of receptors, bridging molecules and 'eat me' signals. The complexity of the system is reflected by the term: 'engulfment synapse', used to describe the interaction between a phagocytic cell and its target. In healthy humans, dying neutrophils are the most abundant and important targets for such recognition and engulfment. In inflammation the scope and importance of this complicated task is further increased. Paradoxically, despite growing evidence highlighting the priority of neutrophils clearance, the recognition of these cells by phagocytes is not as well understood as the recognition of other apoptotic cell types. New findings indicate that the interaction of phosphatidylserine (PS) on apoptotic neutrophils with its receptor on macrophages is not as critical for the specific clearance of neutrophil corpses it was previously believed. In this review we focus on recent findings regarding alternative, PS-independent "eat me" signals expressed on neutrophils during cell death and activation. Based on our own research, we emphasize the clearance of dying neutrophils, especially at the focus of bacterial infection; and the associated inflammatory reaction, which occurs in a highly proteolytic milieu containing both host and bacteria-derived proteinases. In these environments, eat-me signals expressed by neutrophils are drastically modified; arguing against the phospholipid-based detection of apoptotic cells, but supporting the importance of proteinaceous ligand(s) for the recognition of neutrophils by macrophages. In this context we discuss the effect of the gingipain R (Rgp) proteinases from Porphyromonas gingivalis on neutrophils interactions with macrophages. Since the recognition of apoptotic neutrophils is an important fundamental process, serving multiple functions in the regulation of immunity and homeostasis, we hypothesize that many pathogenic bacteria may have developed similar strategies to confuse macrophage-neutrophil interaction as a common pathogenic strategy.  相似文献   

5.
Phagocytosis of apoptotic cells and the resolution of inflammation   总被引:10,自引:0,他引:10  
Clearance of apoptotic cells by phagocytic cells plays a significant role in the resolution of inflammation, protecting tissue from harmful exposure to the inflammatory and immunogenic contents of dying cells. Apoptosis induces cell surface changes that are important for recognition and engulfment of cells by phagocytes. These changes include alterations in surface sugars, externalization of phosphatidylserine and qualitative changes in the adhesion molecule ICAM-3. Several studies have contributed to clarify the role of the receptors on the surface of phagocytes that are involved in apoptotic cell clearance. The phagocytic removal of apoptotic cells does not elicit pro-inflammatory responses; in contrast, apoptotic cell engulfment appears to activate signals that suppress release of pro-inflammatory cytokines. Therefore, clearance of apoptotic leucocytes is implicated in the resolution of inflammation and mounting evidence suggests that defective clearance of apoptotic cells contributes to inflammatory and autoimmune diseases. Defining the ligands on apoptotic cells and the corresponding receptors on phagocytes with which they engage, is likely to lead to the development of novel anti-inflammatory pro-resolution drugs. In this article, we will review the recognition and signaling mechanisms involved in the phagocytosis of apoptotic cells as well as the role of endogenous compounds that play a relevant role in the modulation of inflammation. We will also discuss what is currently known about diseases that may reflect impaired phagocytosis and the consequences on inflammation and immune responses.  相似文献   

6.
Apoptosis and necrosis: detection, discrimination and phagocytosis.   总被引:3,自引:0,他引:3  
Three major morphologies of cell death have been described: apoptosis (type I), cell death associated with autophagy (type II) and necrosis (type III). Apoptosis and cell death associated with autophagy can be distinguished by certain biochemical events. However, necrosis is characterized mostly in negative terms by the absence of caspase activation, cytochrome c release and DNA oligonucleosomal fragmentation. A particular difficulty in defining necrosis is that in the absence of phagocytosis apoptotic cells become secondary necrotic cells with many morphological features of primary necrosis. In this review, we present a selection of techniques that can be used to identify necrosis and to discriminate it from apoptosis. These techniques rely on the following cell death parameters: (1) morphology (time-lapse and transmission electron microscopy and flow fluorocytometry); (2) cell surface markers (phosphatidylserine exposure versus membrane permeability by flow fluorocytometry); (3) intracellular markers (oligonucleosomal DNA fragmentation by flow fluorocytometry, caspase activation, Bid cleavage and cytochrome c release by western blotting); (4) release of extracellular markers in the supernatant (caspases, HMGB-1 and cytokeratin 18). Finally, we report on methods that can be used to examine interactions between dying cells and phagocytes. We illustrate a quantitative method for detecting phagocytosis of dying cells by flow fluorocytometry. We also describe a recently developed approach based on the use of fluid phase tracers and different kind of microscopy, transmission electron and fluorescence microscopy, to characterize the mechanisms used by phagocytes to internalize dying cells.  相似文献   

7.
Programmed cell death eliminates unwanted cells during normal development and physiological homeostasis. While cell interactions can influence apoptosis as they do other types of cell fate, outside of the adaptive immune system little is known about the intercellular cues that actively promote cell death in healthy cells. We used the Caenorhabditis elegans germline as a model to investigate the extrinsic regulators of physiological apoptosis. Using genetic and cell biological methods, we show that somatic gonad sheath cells, which also act as phagocytes of dying germ cells, promote death in the C. elegans germline through VAB-1/Eph receptor signaling. We report that the germline apoptosis function of VAB-1 impacts specific cell death pathways, and may act in parallel to extracellular signal-regulated kinase MAPK signaling. This work defines a non-autonomous, pro-apoptotic signaling for efficient physiological cell death, and highlights the dynamic nature of intercellular communication between dying cells and the phagocytes that remove them.  相似文献   

8.
The ultimate and most favorable fate of almost all dying cells is engulfment by neighboring or specialized cells. Efficient clearance of cells undergoing apoptotic death is crucial for normal tissue homeostasis and for the modulation of immune responses. Engulfment of apoptotic cells is finely regulated by a highly redundant system of receptors and bridging molecules on phagocytic cells that detect molecules specific for dying cells. Recognition of necrotic cells by phagocytes is less well understood than recognition of apoptotic cells, but an increasing number of recent studies, which are discussed here, are highlighting its importance. New observations indicate that the interaction of macrophages with dying cells initiates internalization of the apoptotic or necrotic targets, and that internalization can be preceded by “zipper”-like and macropinocytotic mechanisms, respectively. We emphasize that clearance of dying cells is an important fundamental process serving multiple functions in the regulation of normal tissue turnover and homeostasis, and is not just simple anti- or pro-inflammatory responses. Here we review recent findings on genetic pathways participating in apoptotic cell clearance, mechanisms of internalization, and molecules involved in engulfment of apoptotic versus necrotic cells, as well as their immunological consequences and relationships to disease pathogenesis. Katharina D’Herde and Peter Vandenabeele share senior authorship. This study was supported by Ghent University GOA grant No. 12050502, IUAP-V/12-12.0C14.02, FWO-Vlaanderen 3G.0218.06, and Flanders Interuniversity Institute for Biotechnology (VIB).  相似文献   

9.
Tissue homeostasis in metazoa requires the rapid and efficient clearance of dying cells by professional or semi-professional phagocytes. Impairment of this finely regulated, fundamental process has been implicated in the development of autoimmune diseases, such as systemic lupus erythematosus. Various studies have provided us a detailed understanding of the interaction between dying cells and phagocytes as well as the current concept that apoptotic cell removal leads to a non- or anti-inflammatory response, whereas necrotic cell removal stimulates a pro-inflammatory reaction. In contrast, our knowledge about the soluble factors released from dying cells is rather limited, although meanwhile it is generally accepted that not only the dying cell itself but also the substances liberated during cell death contribute to the process of corpse clearance and the subsequent immune response. This review article is intended as an up-to-date survey over attraction and danger signals of apoptotic, primary and secondary necrotic cells, their function as chemoattractants in phagocyte recruitment, additional effects on the immune system, and the receptors, which are engaged in this scenario.  相似文献   

10.
Clearance of apoptotic cells by phagocytes   总被引:3,自引:0,他引:3  
Phagocytic clearance of apoptotic cells may be considered to consist of four distinct steps: accumulation of phagocytes at the site where apoptotic cells are located; recognition of dying cells through a number of bridge molecules and receptors; engulfment by a unique uptake process; and processing of engulfed cells within phagocytes. Here, we will discuss these individual steps that collectively are essential for the effective removal of apoptotic cells. This will illustrate our relative lack of knowledge about the initial attraction signals, the specific mechanisms of engulfment and processing in comparison to the extensive literature on recognition mechanisms. There is now mounting evidence that clearance defects are responsible for chronic inflammatory disease and contribute to autoimmunity. Therefore, a better understanding of all aspects of the clearance process is required before it can truly be manipulated for therapeutic gain.  相似文献   

11.
Many brain diseases involve activation of resident and peripheral immune cells to clear damaged and dying neurons. Which immune cells respond in what way to cues related to brain disease, however, remains poorly understood. To elucidate these in vivo immunological events in response to brain cell death we used genetically targeted cell ablation in zebrafish. Using intravital microscopy and large-scale electron microscopy, we defined the kinetics and nature of immune responses immediately following injury. Initially, clearance of dead cells occurs by mononuclear phagocytes, including resident microglia and macrophages of peripheral origin, whereas amoeboid microglia are exclusively involved at a later stage. Granulocytes, on the other hand, do not migrate towards the injury. Remarkably, following clearance, phagocyte numbers decrease, partly by phagocyte cell death and subsequent engulfment of phagocyte corpses by microglia. Here, we identify differential temporal involvement of microglia and peripheral macrophages in clearance of dead cells in the brain, revealing the chronological sequence of events in neuroinflammatory resolution. Remarkably, recruited phagocytes undergo cell death and are engulfed by microglia. Because adult zebrafish treated at the larval stage lack signs of pathology, it is likely that this mode of resolving immune responses in brain contributes to full tissue recovery. Therefore, these findings suggest that control of such immune cell behavior could benefit recovery from neuronal damage.KEY WORDS: Brain, Intravital microscopy, Leukocytes, Microglia, Neurodegeneration, Zebrafish  相似文献   

12.
Recent evidence in humans indicate that defective phagocytic clearance of dying cells is linked to progression of advanced atherosclerotic lesions, the precursor to atherothrombosis, ischemic heart disease, and leading cause of death in the industrialized world. During atherogenesis, apoptotic cell turnover in the vascular wall is counterbalanced by neighboring phagocytes with high clearance efficiency, thereby limiting cellularity and maintaining lesion integrity. However, as lesions mature, phagocytic removal of apoptotic cells (efferocytosis) becomes defective, leading to secondary necrosis, expansion of plaque necrotic cores, and susceptibility to rupture. Recent genetic causation studies in experimental rodents have implicated key molecular regulators of efferocytosis in atherosclerotic progression. These include MER tyrosine kinase (MERTK), milk fat globule-EGF factor 8 (MFGE8), and complement C1q. At the cellular level, atheromata are infiltrated by a heterogenous population of professional phagocytes, comprised of monocytes, differentiated macrophages, and CD11c+ dendritic-like cells. Each cell type is characterized by disparate clearance efficiencies and varying activities of key phagocytic signaling molecules. It is in this context that we outline a working model whereby plaque necrosis and destabilization is jointly promoted by (1) direct inhibition of core phagocytic signaling pathways and (2) expansion of phagocyte subsets with poor clearance capacity. Towards identifying targets for promoting efficient apoptotic cell clearance and resolving inflammation in atherosclerosis and during ischemic heart disease and post myocardial infarction, this review will discuss potential in vivo suppressors of efferocytosis at each stage of clearance and how these putative interventional targets may differentially affect uptake at the level of vascular phagocyte subsets.  相似文献   

13.
Cell death and removal of cell corpses in a timely manner is a key event in both physiological and pathological situations including tissue homeostasis and the resolution of inflammation. Phagocytic clearance of cells dying by apoptosis is a complex sequential process comprising attraction, recognition, tethering, signalling and ultimately phagocytosis and degradation of cell corpses. A wide range of molecules acting as apoptotic cell-associated ligands, phagocyte-associated receptors or soluble bridging molecules have been implicated within this process. The role of myeloid cell CD14 in mediating apoptotic cell interactions with macrophages has long been known though key molecules and residues involved have not been defined. Here we sought to further dissect the function of CD14 in apoptotic cell clearance. A novel panel of THP-1 cell-derived phagocytes was employed to demonstrate that CD14 mediates effective apoptotic cell interactions with macrophages in the absence of detectable TLR4 whilst binding and responsiveness to LPS requires TLR4. Using a targeted series of CD14 point mutants expressed in non-myeloid cells we reveal CD14 residue 11 as key in the binding of apoptotic cells whilst other residues are reported as key for LPS binding. Importantly we note that expression of CD14 in non-myeloid cells confers the ability to bind rapidly to apoptotic cells. Analysis of a panel of epithelial cells reveals that a number naturally express CD14 and that this is competent to mediate apoptotic cell clearance. Taken together these data suggest that CD14 relies on residue 11 for apoptotic cell tethering and it may be an important tethering molecule on so called ‘non-professional’ phagocytes thus contributing to apoptotic cell clearance in a non-myeloid setting. Furthermore these data establish CD14 as a rapid-acting tethering molecule, expressed in monocytes, which may thus confer responsiveness of circulating monocytes to apoptotic cell derived material.  相似文献   

14.
Programmed cell death by apoptosis of unnecessary or potentially harmful cells is clearly beneficial to multicellular organisms. Proper functioning of such a program demands that the removal of dying cells proceed without an inflammatory reaction. Phosphatidylserine (PS) is one of the ligands displayed by apoptotic cells that participates in their noninflammatory removal when recognized by neighboring phagocytes. PS ligation induces the release of transforming growth factor-beta (TGF-beta), an antiinflammatory cytokine that mediates the suppression of macrophage-mediated inflammation. In Hydra vulgaris, an organism that stands at the base of metazoan evolution, the selective advantage provided by apoptosis lies in the fact that Hydra can survive recycling apoptotic cells by phagocytosis. In unicellular organisms, it has been proposed that altruistic death benefits clonal populations of yeasts and trypanosomatids. Now we show that advantageous features of the apoptotic process can operate without death as the necessary outcome. Leishmania spp are able to evade the killing activity of phagocytes and establish themselves as obligate intracellular parasites. Amastigotes, responsible for disease propagation, similar to apoptotic cells, inhibit macrophage activity by exposing PS. Exposed PS participates in amastigote internalization. Recognition of this moiety by macrophages induces TGF-beta secretion and IL-10 synthesis, inhibits NO production, and increases susceptibility to intracellular leishmanial growth.  相似文献   

15.
Clearance of apoptotic cells is critical to tissue homeostasis and resolution of inflammatory lesions. Macrophages are known to remove dying cells and release anti-inflammatory mediators in response; however, many cells traditionally thought of as poor phagocytes can mediate this function as well. In the lactating mammary gland following weaning, alveolar epithelial cell death is massive, yet the gland involutes rapidly, attaining its prepregnancy state in a matter of days. We found histologic evidence of apoptotic cell phagocytosis by viable mammary epithelial cells (MEC) in the involuting mouse mammary gland. Cultured MEC were able to engulf apoptotic cells in vitro, utilizing many of the same receptors used by macrophages, including the phosphatidylserine receptor (PSR), CD36, the vitronectin receptor alpha(v)beta3, and CD91. In addition, MEC, like macrophages, produced TGFbeta in response to stimulation of the PSR by apoptotic cells or the anti-PSR ab 217G8E9, and downregulated endotoxin-stimulated proinflammatory cytokine production. These data support the hypothesis that amateur phagocytes play a significant role in apoptotic cell clearance and its regulation of inflammation.  相似文献   

16.
Milk fat globule-EGF-factor 8-L (MFG-E8L) is secreted by activated macrophages and functions as a linker protein or opsonin between the dying cells and phagocytes. MFG-E8L recognizes the apoptotic or dying cells by specifically binding to Phosphatidylserine (PS) exposed on the outer cell surface and enhances the engulfment of the apoptotic cells by phagocytes, thereby preventing the inflammation and autoimmune response against intracellular antigens that can be released from the dying cells. MFG-E8L contains two EGF-like domains, P/T (proline/threonine) rich domain followed by two discoidin-like domains (C1 and C2). Recent studies have shown that the C2 domain of MFG-E8L is specifically involved in interaction with PS exposed on the apoptotic cells. Towards understanding this specific molecular interaction between the MFG-E8L C2 domain and PS, we expressed, purified the C2 domain of MFG-E8L and performed the binding studies with phospholipids by (31)P NMR experiment. We demonstrated that our recombinant construct and expression system were effective and allowed us to obtain the C2 domain and also showed that the purified C2 domain was stable and properly folded, and our (31)P NMR studies indicated that the C2 domain had specific binding with PS.  相似文献   

17.
Dying cells of both chromaffin and cortical cell types were found scattered throughout the adrenal gland of 14-18 day mouse embryos and 17-19 day chick embryos. The ultrastructural appearance of these dying cells was unlike that of cells undergoing apoptosis and there was no evidence of macrophages or other phagocytes removing these cells from the adrenal. Possible morphogenetic functions of cell death in the developing adrenal are discussed.  相似文献   

18.
Apoptosis effector mechanisms: A requiem performed in different keys   总被引:2,自引:0,他引:2  
Apoptosis is the regulated form of cell death utilized by metazoans to remove unneeded, damaged, or potentially deleterious cells. Certain manifestations of apoptosis may be associated with the proteolytic activity of caspases. These changes are often held as hallmarks of apoptosis in dying cells. Consequently, many regard caspases as the central effectors or executioners of apoptosis. However, this “caspase-centric” paradigm of apoptotic cell death does not appear to be as universal as once believed. In fact, during apoptosis the efficacy of caspases may be highly dependent on the cytotoxic stimulus as well as genetic and epigenetic factors. An ever-increasing number of studies strongly suggest that there are effectors in addition to caspases, which are important in generating apoptotic signatures in dying cells. These seemingly caspase-independent effectors may represent evolutionarily redundant or failsafe mechanisms for apoptotic cell elimination. In this review, we will discuss the molecular regulation of caspases and various caspase-independent effectors of apoptosis, describe the potential context and/or limitations of these mechanisms, and explore why the understanding of these processes may have relevance in cancer where treatment is believed to engage apoptosis to destroy tumor cells.  相似文献   

19.
20.
An expanding body of evidence demonstrates that cells undergoing apoptosis send out a selection of molecular navigational signals including proteins, lipids and nucleotides that serve to recruit phagocytes to the dying targets, which are subsequently engulfed and removed. This homeostatic process is essentially non-phlogistic, contrasting markedly with the acute inflammatory responses elicited in phagocytes by damaging or infectious agents. The “professional” scavengers of apoptotic cells are mononuclear phagocytes—the macrophages—and sites of high-rate apoptosis are clearly characterized by macrophages associated with the apoptotic cells. By contrast, members of the other class of professional phagocytes—the granulocytes—are not recruited to sites of apoptosis as a direct consequence of the cell-death program. Indeed, recent work indicates that apoptotic cells release a mixture of migratory cues to leukocytes in order to selectively attract mononuclear phagocytes but not granulocytes through functional balancing of positive and negative signals. Here we discuss these molecular mechanisms that not only serve as migratory cues but also may activate responding phagocytes to engulf apoptotic cells effectively. Finally, we speculate upon new therapeutic opportunities these mechanisms offer for a range of pathological conditions, including inflammatory disorders and cancer.Key words: apoptosis, migration, chemotaxis, macrophage, monocyte, granulocyte, phagocytosis, lactoferrin, ATP, fractalkine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号