首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA damage checkpoints lead to the inhibition of cell cycle progression following DNA damage. The Saccharomyces cerevisiae Mec1 checkpoint protein, a phosphatidylinositol kinase-related protein, is required for transient cell cycle arrest in response to DNA damage or DNA replication defects. We show that mec1 kinase-deficient (mec1kd) mutants are indistinguishable from mec1Delta cells, indicating that the Mec1 conserved kinase domain is required for all known Mec1 functions, including cell viability and proper DNA damage response. Mec1kd variants maintain the ability to physically interact with both Ddc2 and wild-type Mec1 and cause dominant checkpoint defects when overproduced in MEC1 cells, impairing the ability of cells to slow down S phase entry and progression after DNA damage in G(1) or during S phase. Conversely, an excess of Mec1kd in MEC1 cells does not abrogate the G(2)/M checkpoint, suggesting that Mec1 functions required for response to aberrant DNA structures during specific cell cycle stages can be separable. In agreement with this hypothesis, we describe two new hypomorphic mec1 mutants that are completely defective in the G(1)/S and intra-S DNA damage checkpoints but properly delay nuclear division after UV irradiation in G(2). The finding that these mutants, although indistinguishable from mec1Delta cells with respect to the ability to replicate a damaged DNA template, do not lose viability after UV light and methyl methanesulfonate treatment suggests that checkpoint impairments do not necessarily result in hypersensitivity to DNA-damaging agents.  相似文献   

2.
Induction and repair of DNA double-strand breaks (dsb) was investigated in plateau phase Chinese hamster V79 cells and three radiosensitive mutant cell lines derived from them, irs-1, irs-2 and irs-3, using a pulsed-field gel electrophoresis assay, Asymmetric Field Inversion Gel Electrophoresis (AFIGE). There was no difference in the induction of DNA dsb per Gy and dalton between the radiosensitive mutant cells and wild-type V79 cells despite the wide differences in their radiosensitivity. Also, repair of DNA dsb proceeded in all cell lines with similar kinetics. In contrast to these observations at the DNA level, irradiation of exponentially growing cells showed a prolonged delay in G2 for irs-2 cells and a shortened delay in G2 for irs-1 cells, as compared to wild-type V79 cells. These results confirm previous observations suggesting that a deficiency in the rejoining of DNA dsb is unlikely to be the cause of the increased radiosensitivity of irs cells, and implicate alterations in postirradiation cell cycle progression as a possible cause for this phenomenon, although the mechanism is not known.  相似文献   

3.
4.
DNA‐minor‐groove‐binding ligands are potent antineoplastic molecules. The antibiotic distamycin A is the prototype of one class of these DNA‐interfering molecules that have been largely used in vitro. The affinity of distamycin A for DNA is well known, and the structural details of the complexes with some B‐DNA and G‐quadruplex‐forming DNA sequences have been already elucidated. Here, we show that distamycin A binds S100β, a protein involved in the regulation of several cellular processes. The reported affinity of distamycin A for the calcium(II)‐loaded S100β reinforces the idea that some biological activities of the DNA‐minor‐groove‐binding ligands arise from the binding to cellular proteins. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The product of the human immunodeficiency virus type 1 (HIV-1) vpr gene induces cell cycle arrest in the G2 phase of the cell cycle and is characterized by an accumulation of the hyperphosphorylated form of cdc2 kinase. This phenotype is similar to the effect of DNA-damaging agents, which can also cause cells to arrest at G2. We previously reported that Vpr mimicked some of the effects of a DNA alkylating agent known as nitrogen mustard (HN2). Here we extend these earlier observations by further comparing the activation state of cdc2 kinase, the kinetics of G2 arrest, and the ability to reverse the arrest with chemical compounds known as methylxanthines. Infection of cells synchronized in the G1 phase of the cell cycle with a pseudotyped HIV-1 resulted in arrest at G2 within 12 h postinfection, before the first mitosis. Similar to that induced by HN2, Vpr-induced arrest led to a decrease in cdc2 kinase activity. Vpr-mediated G2 arrest was alleviated by methylxanthines at concentrations similar to those needed to reverse the G2 arrest induced by HN2, and cells proceeded apparently normally through at least one complete cell cycle. These results are consistent with the hypothesis that Vpr induces G2 arrest through pathways that are similar to those utilized by DNA-damaging agents.  相似文献   

6.
Mouse neuroblastoma (N2A) cells react to a heat treatment by inhibition of DNA and protein synthesis and induction of cell cycle progression delay. Mitotic delay of heat-treated G1 cells correlates with reduction of protein synthesis and is due to an extensive delay of entrance into S phase, while the G2 phase of these cells is shortened. Mitotic delay of heat-treated G2 cells is more than in G1 cells and no correlation with protein synthesis reduction is found. In heat-treated G1 phase cells, both protein synthesis and cell cycle progression become thermotolerant to a second incubation at increased temperature. Moreover, the process of DNA synthesis becomes thermotolerant. In contrast, when heat-treated G1 phase cells have progressed into G2 phase and are then incubated at increased temperature, this G2 phase delay is not diminished. Apparently, additional targets for hyperthermia are present in late S and G2 phase cells.  相似文献   

7.
8.
We had earlier shown that human foetal epithelial cells (WISH), growth-inhibited by interferon gamma (IFNgamma), were reversibly detained at a point prior to DNA synthesis. In the present study, we determined the window of action of IFNgamma in the G1 phase duration and the exact point of detention of WISH cells in cell cycle progression with respect to the known points of detention by the inhibitors of DNA replication initiation (aphidicolin and carbonyl diphosphonate) and of activation of replication protein A (6-dimethylaminopurine), of which RPA activation being the earlier event compared to DNA replication initiation in cell cycle progression. WISH cells, which were released from IFNgamma-induced arrest, permeabilised and exposed independently to these inhibitors show that IFNgamma detains WISH cells prior to initiation of DNA synthesis. Further, exposure of IFNalpha-synchronized (at G0/G1) or mimosine-synchronized (at G1/S) WISH cells to IFNgamma, which was added at different time points post-release from the synchronizing agent, showed that the cells were promptly responsive to the growth inhibitory action of IFNgamma only during the first 11h in G1 phase. Taken together, these results suggest that IFNgamma inhibits growth of WISH cells by detaining them at a point prior to initiation of DNA synthesis and that the IFN acts within the first 11h in G1 phase of the cell cycle.  相似文献   

9.
Extracellular signal-regulated kinase activity is essential for mediating cell cycle progression from G(1) phase to S phase (DNA synthesis). In contrast, the role of extracellular signal-regulated kinase during G(2) phase and mitosis (M phase) is largely undefined. Previous studies have suggested that inhibition of basal extracellular signal-regulated kinase activity delays G(2)- and M-phase progression. In the current investigation, we have examined the consequence of activating the extracellular signal-regulated kinase pathway during G(2) phase on subsequent progression through mitosis. Using synchronized HeLa cells, we show that activation of the extracellular signal-regulated kinase pathway with phorbol 12-myristate 13-acetate or epidermal growth factor during G(2) phase causes a rapid cell cycle arrest in G(2) as measured by flow cytometry, mitotic indices and cyclin B1 expression. This G(2)-phase arrest was reversed by pre-treatment with bisindolylmaleimide or U0126, which are selective inhibitors of protein kinase C proteins or the extracellular signal-regulated kinase activators, MEK1/2, respectively. The extracellular signal-regulated kinase-mediated delay in M-phase entry appeared to involve de novo synthesis of the cyclin-dependent kinase inhibitor, p21(CIP1), during G(2) through a p53-independent mechanism. To establish a function for the increased expression of p21(CIP1) and delayed cell cycle progression, we show that extracellular signal-regulated kinase activation in G(2)-phase cells results in an increased number of cells containing chromosome aberrations characteristic of genomic instability. The presence of chromosome aberrations following extracellular signal-regulated kinase activation during G(2)-phase was further augmented in cells lacking p21(CIP1). These findings suggest that p21(CIP1) mediated inhibition of cell cycle progression during G(2)/M phase protects against inappropriate activation of signalling pathways, which may cause excessive chromosome damage and be detrimental to cell survival.  相似文献   

10.
Cyclin E2, the cycle continues   总被引:3,自引:0,他引:3  
The eukaryotic cell cycle is regulated by a family of serine/threonine protein kinases known as cyclin-dependent kinases (CDKs). The activation of a CDK is dependent on its association with a cyclin regulatory subunit. The formation of distinct cyclin-CDK complexes controls the progression through the first gap phase (G(1)) and initiation of DNA synthesis (S phase). These complexes are in turn regulated by protein phosphorylation and cyclin-dependent kinase inhibitors (CKIs). Cyclin E2 has emerged as the second member of the E-type cyclin family. Cyclin E2-associated kinase activity is regulated in a cell cycle dependent manner with peak activity at the G(1) to S transition. Ectopic expression of cyclin E2 in human cells accelerates G(1), suggesting that cyclin E2 is rate limiting for G(1) progression. Although the pattern and level of cyclin E2 expression in some primary tumor and normal tissue RNAs are distinct from cyclin E1, both E-type cyclins appear to have inherent functional redundancies. This functional redundancy has facilitated the rapid characterization of cyclin E2 and uncovered unique features associated with each E-type cyclin.  相似文献   

11.
Timely degradation of regulatory proteins by the ubiquitin proteolytic pathway (UPP) is an established paradigm of cell cycle regulation during the G2/M and G1/S transitions. Less is known about roles for the UPP during S phase. Here we present evidence that dynamic cell cycle–dependent changes in levels of UbcH7 regulate entrance into and progression through S phase. In diverse cell lines, UbcH7 protein levels are dramatically reduced in S phase but are fully restored by G2. Knockdown of UbcH7 increases the proportion of cells in S phase and doubles the time to traverse S phase, whereas UbcH7 overexpression reduces the proportion of cells in S phase. These data suggest a role for UbcH7 targets in the completion of S phase and entry into G2. Notably, UbcH7 knockdown was coincident with elevated levels of the checkpoint kinase Chk1 but not Chk2. These results argue that UbcH7 promotes S phase progression to G2 by modulating the intra-S phase checkpoint mediated by Chk1. Furthermore, UbcH7 levels appear to be regulated by a UPP. Together the data identify novel roles for the UPP, specifically UbcH7 in the regulation of S phase transit time as well as in cell proliferation.  相似文献   

12.
Cells can respond to DNA damage by activating checkpoints that delay cell cycle progression and allow time for DNA repair. Chemical inhibitors of the G(2) phase DNA damage checkpoint may be used as tools to understand better how the checkpoint is regulated and may be used to sensitize cancer cells to DNA-damaging therapies. However, few inhibitors are known. We used a cell-based assay to screen natural extracts for G(2) checkpoint inhibitors and identified debromohymenialdisine (DBH) from a marine sponge. DBH is distinct structurally from previously known G(2) checkpoint inhibitors. It inhibited the G(2) checkpoint with an IC(50) of 8 micrometer and showed moderate cytotoxicity (IC(50) = 25 micrometer) toward MCF-7 cells. DBH inhibited the checkpoint kinases Chk1 (IC(50) = 3 micrometer) and Chk2 (IC(50) = 3.5 micrometer) but not ataxia-telangiectasia mutated (ATM), ATM-Rad3-related protein, or DNA-dependent protein kinase in vitro, indicating that it blocks two major branches of the checkpoint pathway downstream of ATM. It did not cause the activation or inhibition of different signal transduction proteins, as determined by mobility shift analysis in Western blots, suggesting that it inhibits a narrow range of protein kinases in vivo.  相似文献   

13.
Topoisomerases are known to aid DNA replication by breaking and resealing supercoiled DNA. Consequently, cells exposed to topoisomerase inhibitors before or during the S (DNA synthetic) phase of the cell cycle undergo abnormal DNA replication and become irreversibly blocked in the G2 (pre-mitosis) phase. We report that following a 4-h exposure to topoisomerase II inhibitors, murine erythroleukemic cells (MELC) do not form mitotic figures but exhibit a time-dependent progression into G2 (4N DNA) and greater than G2 (up to 8N DNA) stages of the cell cycle. Following exposure to the topoisomerase I inhibitor camptothecin, recovering MELC also exhibit greater than G2 polyploidy, but to a considerably lesser degree: mitotic figures are present and a subpopulation of cells resumes cycling. However, both topo I and topo II inhibitors induce maximal percentages of greater than G2 cells when synchronized MELC are in the G2/M phase at the time of exposure. This suggests that, in addition to their S-phase action, topoisomerase inhibitors can interfere with chromosome condensation during G2 and, in so doing, induce polyploidy.  相似文献   

14.
The viral protein HIV-1 integrase is required for insertion of the viral genome into human chromosomes and for viral replication. Integration proceeds in two consecutive integrase-mediated reactions: 3'-processing and strand transfer. To investigate the DNA minor groove interactions of integrase relative to known sites of integrase action, we synthesized oligodeoxynucleotides containing single covalent adducts of known absolute configuration derived from trans-opening of benzo-[a]pyrene 7,8-diol 9,10-epoxide by the exocyclic 2-amino group of deoxyguanosine at specific positions in a duplex sequence corresponding to the terminus of the viral U5 DNA. Because the orientations of the hydrocarbon in the minor groove are known from NMR solution structures of duplex oligonucleotides containing these deoxyguanosine adducts, a detailed analysis of the relationship between the position of minor groove ligands and integrase interactions is possible. Adducts placed in the DNA minor groove two or three nucleotides from the 3'-processing site inhibited both 3'-processing and strand transfer. Inosine substitution showed that the guanine 2-amino group is required for efficient 3'-processing at one of these positions and for efficient strand transfer at the other. Mapping of the integration sites on both strands of the DNA substrates indicated that the adducts both inhibit strand transfer specifically at the minor groove bound sites and enhance integration at sites up to six nucleotides away from the adducts. These experiments demonstrate the importance of position-specific minor groove contacts for both the integrase-mediated 3'-processing and strand transfer reactions.  相似文献   

15.
In mammalian cells inhibition of the cdc2 function results in arrest in the G2-phase of the cell cycle. Several cdc2-related gene products have been identified recently and it has been hypothesized that they control earlier cell cycle events. Here we have studied the relationship between activation of one of these cdc2 homologs, the cdk2 protein kinase, and the progression through the cell cycle in cultured human fibroblasts. We found that cdk2 was activated and specifically localized to the nucleus during S phase and G2. Microinjection of affinity-purified anti-cdk2 antibodies but not of affinity-purified anti-cdc2 antibodies, during G1, inhibited entry into S phase. The specificity of these effects was demonstrated by the fact that a plasmid-driven cdk2 overexpression counteracted the inhibition. These results demonstrate that the cdk2 protein kinase is involved in the activation of DNA synthesis.  相似文献   

16.
Through interaction with a multitude of target proteins, 14-3-3 proteins participate in the regulation of diverse cellular processes including apoptosis. These 14-3-3-interacting proteins include a proapoptotic Bcl-2 homolog, Bad (Bcl-2/Bcl-XL-associated death promoter). To understand how 14-3-3 interacts with Bad and modulates its function, we have identified structural elements of 14-3-3 necessary for 14-3-3/Bad association. 14-3-3 contains a conserved amphipathic groove that is required for binding to several of its ligands. We used peptides of known binding specificity as competitors to demonstrate that Bad interacts with 14-3-3zeta via its amphipathic groove. More detailed analysis revealed that several conserved residues in the groove, including Lys-49, Val-176, and Leu-220, were critical for Bad interaction. These results were applied to investigations of the ability of 14-3-3 to prevent Bad-induced cell death. When co-expressed with Akt, wild-type 14-3-3 could reduce the ability of Bad to cause death, however 14-3-3zetaK49E, which cannot bind Bad, failed to inhibit Bad. It seems that the amphipathic groove of 14-3-3 represents a general binding site for multiple ligands, raising issues related to competition of ligands for 14-3-3.  相似文献   

17.
Root knot and cyst nematodes induce large multinucleated cells, designated giant cells and syncytia, respectively, in plant roots. We have used molecular markers to study cell cycle progression in these specialized feeding cells. In situ hybridization with two cyclin-dependent kinases and two cyclins showed that these genes were induced very early in galls and syncytia and that the feeding cells progressed through the G2 phase. By using cell cycle blockers, DNA synthesis and progression through the G2 phase, or mitosis, were shown to be essential for gall and syncytium establishment. When mitosis was blocked, further gall development was arrested. This result demonstrates that cycles of endoreduplication or other methods of DNA amplification are insufficient to drive giant cell expansion. On the other hand, syncytium development was much less affected by a mitotic block; however, syncytium expansion was inhibited.  相似文献   

18.
The activation of CDK2-cyclin E in late G1 phase has been shown to play a critical role in retinoblastoma protein (pRb) inactivation and G1-S phase progression of the cell cycle. The phosphatidylinositol 3-OH-kinase inhibitor LY294002 has been shown to block cyclin D1 accumulation, CDK4 activity and, thus, G1 progression in alpha-thrombin-stimulated IIC9 cells (Chinese hamster embryonic fibroblasts). Our previous results show that expression of cyclin E rescues S phase progression in alpha-thrombin-stimulated IIC9 cells treated with LY294002, arguing that cyclin E renders CDK4 activity dispensable for G1 progression. In this work we investigate the ability of alpha-thrombin-induced CDK2-cyclin E activity to inactivate pRb in the absence of prior CDK4-cyclin D1 activity. We report that in the absence of CDK4-cyclin D1 activity, CDK2-cyclin E phosphorylates pRb in vivo on at least one residue and abolishes pRb binding to E2F response elements. We also find that expression of cyclin E rescues E2F activation and cyclin A expression in cyclin D kinase-inhibited, alpha-thrombin-stimulated cells. Furthermore, the rescue of E2F activity, cyclin A expression, and DNA synthesis by expression of E can be blocked by the expression of either CDK2(D145N) or RbDeltaCDK, a constitutively active mutant of pRb. However, restoring four known cyclin E-CDK2 phosphorylation sites to RbDeltaCDK renders it susceptible to inactivation in late G1, as assayed by E2F activation, cyclin A expression, and S phase progression. These data indicate that CDK2-cyclin E, without prior CDK4-cyclin D activity, can phosphorylate and inactivate pRb, activate E2F, and induce DNA synthesis.  相似文献   

19.
Recent work has shown that macrophage-mediated cytostatic activity inhibits cell cycle traverse in G1 and/or S phase of the cell cycle without affecting late S, G2, or M phases. The present report is directed at distinguishing between such cytostatic effects on G1 phase or S phase using the accumulation of DNA polymerase alpha as a marker of G1 to S phase transition. Quiescent lymphocytes stimulated with concanavalin A undergo a semisynchronous progression from G0 to G1 to S phase with a dramatic increase in DNA polymerase alpha activity between 20 and 30 hr after stimulation. This increase in enzyme activity was inhibited, as was the accumulation of DNA, when such cells were cocultured with activated murine peritoneal macrophages during this time interval. However, if mitogen-stimulated lymphocytes were enriched for S-phase cells by centrifugal elutriation and cocultured with activated macrophages for 4-6 hr, DNA synthesis was inhibited but the already elevated DNA-polymerase activity was unaffected. Similar results were obtained when a virally transformed lymphoma cell line was substituted as the target cell in this assay. These results show that both G1 and S phase of the cycle are inhibited and suggest that inhibition of progression through the different phases may be accomplished by at least two distinct mechanisms.  相似文献   

20.
Topoisomerase I (top1) relieves supercoiling in DNA by forming transient covalent cleavage complexes. These cleavage complexes can accumulate in the presence of damaged DNA or anticancer drugs that either intercalate or lie in the minor groove. Recently we reported that covalent diol epoxide (DE) adducts of benzo[a]pyrene (BaP) at the exocyclic amino group of G(+1) block cleavage at a preferred cleavage site ( approximately CTT-G(+1)G(+2)A approximately ) and cause accumulation of cleavage products at remote sites. In the present study, we have found that the 10S G(+2) adduct of BaP DE, which lies toward the scissile bond in the minor groove, blocks normal cleavage, whereas the 10R isomer, which orients away from this bond, allows normal cleavage but blocks religation. In contrast to BaP, the pair of benzo[c] phenanthrene (BcPh) DE adducts at G(+2), which intercalate from the minor groove either between G(+1)/G(+2) or between G(+2)/A, allow normal cleavage but block religation. Both intercalated BcPh DE adducts at G(+1) suppress normal cleavage, as do both groove bound BaP DE adducts at this position. These studies demonstrate that these DE adducts provide a novel set of tools to study DNA topoisomerases and emphasize the importance of contacts between the minor groove and top1's catalytic site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号